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- Assessing large number of Optical Coherence 
Tomographies (OCTs) for screening purposes or retrospective 
data analysis is time-consuming and costly;

- Artificial Intelligence can help to automate these tasks.
- However, developing machine learning models for detecting 

every possible disease is not feasible as it  requires an 
immense amount of time and resources;

- Generic Deep Neural Networks (DNNs) that detect anomalies 
by learning what are the normal cases is a more viable 
approach.

Purpose

-  The DNN infers an anomaly score map for each B-scan;
-  Reverse Teacher-Student (T-S) knowledge distillation is used1:

-  T and S have have a similar architecture based on ResNet-18;
 
-  T is pre-trained on ImageNet for natural image classification 
and is frozen during training and inference;

-  S has random weights and approx. half of T’s parameters.

 During training:
- the model only has access to healthy B-scans;
- S is trained to replicate the intermediary representations of T 

by minimizing their distance d.

 At inference:
- the differences d between the features of T and S are 

measured for all B-scans, leading to an anomaly map;
- A volume-wise score is obtained as the maximum anomaly 

score for all B-scans of an OCT.

Methods

- The average volume-wise anomaly detection area under the 
ROC curve was 0.96±0.03;

- The anomaly profile suggests higher pathology presence near 
the fovea;

Results
Receiver Operating Characteristic curve 

Average per-B-scan anomaly score

- DNNs are efficiently capable of detecting anomalous retinal 
OCT volumes by learning exclusively from normal cases;

- Together with an interpretable explanation of the decision, 
these systems can facilitate large scale patient screening 
from real-world datasets for therapeutic management and trial 
selection.

Conclusions

Explanation with anomaly detection maps
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During inference, the 

distance D between 

the Teacher’s and 
Student’s 
representations is 
measured

During training we minimize the distances D 

between the Teacher’s and Student’s 
intermediary representations 

The Student does not properly represent anomalous B-
scan regions, leading to differences with the 

intermediary features from the Teacher
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- Heidelberg Spectralis fovea-centered OCT scans were used;
- The model is trained with 5191 normal B-scans from 278 eyes;
- The model is tested in 118 normal eyes and 2850 eyes with 

different pathologies.
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