

Improving the robustness of deep learning systems for automated AMD screening in retinal OCT Teresa Araújo¹, Guilherme Aresta¹, Ursula Schmidt-Erfurth², Hrvoje Bogunović¹

¹Christian Doppler Lab for Artificial Intelligence in Retina, Medical University of Vienna, Vienna, Austria ²Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria

Purpose

Deep learning (DL) methods for automated retinal OCT screening often provide overly confident predictions for unrelated pathologies (outliers), compromising their translation to clinical use. This study aims at **improving the robustness/reliability** of the DL-based diagnostic systems when presented with disease types not included as part of the training.

Methods

Outlier exposure (OE), i.e. training a model with a small number of outlier cases, is explored to improve outlier detection during automated screening for **age**related macular degeneration (AMD) on retinal OCTs.

We use a multi-center dataset with target classes: nonpathological, intermediate AMD (iAMD), neovascular AMD (nAMD) and geographical atrophy (GA), and outliers: diabetic macular edema (DME), retinal vein occlusion (RVO), and Stargardt disease. We fine-tuned a DL model (EfficientNetV2-B0) for central B-scan classification.

The tested approach is **entropy normalization OE**, i.e. approximating the outlier prediction probabilities to the uniform distribution. As a baseline, the network is trained without OE. Each sample's outlier score was obtained with the following metrics:

- maximum predicted classification probability (MP)
- entropy of the output probabilities
- Cosine distance based on the features of the penultimate network layer

The AMD dataset had **3364 OCTs (2661 patients)** and were split patient-wise into 70% training, 15% validation, and 15% testing; 295 outlier samples were included in the test set (162 DME, 19 Stargardt and 114 RVO), and 500 OCTs were available for OE.

Fig. 1: Method for outlier detection.

Results

Providing a reduced number of outlier cases, increased the outlier detection performance without deteriorating the inlier classification performance: 0.98 macro-average area under the Receiver Operating Characteristic (AUC).

Table 1: AUC for the identification of outliers based on different metrics.

Method / Metric	Maximum probability	Entropy	Cosine distance
Baseline (no OE)	0.69	0.71	0.85
With OE (4 cases per class)	0.78	0.80	0.90

Financial disclosures: TA: None; GA: None; USE: Genentech (F), Kodiak (F), Novartis (F), Apellis (F,C), RetInSight (F,P); HB: Heidelberg Engineering (F), Apellis (F,R),

screening and the corresponding explanation maps.

Fig. 3: OE method and score metrics performance for outlier detection, in relation with the number of exposed outliers. Colors: class of the exposed outliers; "all": all classes; "N/A": no exposure.

Conclusion

Combining OE with the Cosine distance improved the outlier detection performance **by 30%** compared to the baseline with MP scoring.

Exposing the network to a few non-AMD examples improves the detection of unrelated pathologies in the context of automated AMD screening, making the **DL** systems more reliable and trustworthy.

References

ICLR 2017 1–12 (2017).

Contact: teresa.safinisterraaraujo@meduniwien.ac.at https://optima.meduniwien.ac.at

^[1] Hendrycks, D. & Gimpel, K. A baseline for detecting misclassified and out-ofdistribution examples in neural networks. 5th Int. Conf. on Learn. Represent.

^[2] Hendrycks, D., Mazeika, M. & Dietterich, T. Deep anomaly detection with outlier exposure. 7th Int. Conf. on Learn.Represent. ICLR 2019 1-18 (2019).

^[3] Guha Roy, A. et al. Does your dermatology classifier know what it doesn't know? Detecting the long-tail of unseen conditions. Med. Image Analysis 75, 102274, DOI: 10.1016/j.media.2021.102274 (2022)