Poster number: 2167 - C0120

Ability of eye-care professionals in <u>grading retinal fluid volumes and change</u> in agerelated macular degeneration <u>assessed by automated fluid monitoring</u>

Martin Michl, Bianca S. Gerendas, Anastasiia Gruber, Philipp Seeböck, Felix Goldbach, Georgios Mylonas, Oliver Leingang, Wolf Bühl, Stefan Sacu, Hrvoje Bogunovic, Ursula Schmidt-Erfurth

Department of Ophthalmology and Optometry, Medical University of Vienna, Vienna, Austria; Laboratory of Ophthalmic Image Analysis & Vienna Reading Center

Visit 1

Purpose:

Flexible treatment regimens in neovascular age-related macular degeneration (nAMD) are largely based on the clinical assessement of intra- and subretinal fluid (IRF, SRF) on OCT images

MEDICAL UNIVERSITY

OF VIENNA

 The goal of this study was to use an Al-based fluid algorithm to determine the discriminative ability of eye-care professionals in grading intra- and subretinal fluid (IRF, SRF) presence and volume change in real-world OCT images of patients with nAMD

Material:

- Included were Spectralis SD-OCT scans of two consecutive visits from nAMD patients from our retina department who had received one anti-VEGF injection between the two visits
- 5 retina specialists (RET), 3 ophthalmology residents (RES), 3 general ophthalmologists (GENO), 3 orthoptists (ORTH) and 3 certified graders from the Vienna Reading Center (VRC) graded the scans for
 - IRF/SRF presence
 - IRF/SRF change: increase / stable-no change / decrease
- The Vienna Fluid Monitor (RetInSight, Vienna, Austria) was applied to automatically segment and quantify IRF/SRF volumes and changes between visits
- In each group, the majority vote was used to calculate sensitivity (Sen) and specificity (Spe) of detecting fluid at each visit
- For fluid change, ROC curves were generated to determine volume cut-offs (nl) that provided the best trade-off between Sen and Spe (=Youden Index)

Visit 2

Results:

- Included were 124 visit pairs of 59 eyes
- The ability to detect IRF and SRF appeared similar between groups, with an accuracy that depends on the chosen cut-off for fluid presence:

	IRF cut-off				SRF cut-off			
	1nl<		5nl<		1nl<		5nl<	
	Sen	Spe	Sen	Spe	Sen	Spe	Sen	Spe
RET	0,69	0,89	0,91	0,87	0,85	0,86	0,95	0,78
RES	0,70	0,89	0,95	0,88	0,82	0,93	0,94	0,87
GENO	0,69	0,87	0,91	0,84	0,78	0,93	0,89	0,88
ORTH	0,65	0,92	0,89	0,91	0,81	0,96	0,92	0,90
VRC	0,67	0,81	0,81	0,76	0,91	0,87	0,98	0,74

Across all groups, there were no obvious differences in discriminating the **fluid change** between the two visits:

IRF increases of <u>1.7-3nl</u> were detected with Sen: 0,91-1,0 and Spe: 0,88-0,93

IRF decreases of <u>2.8-16.9nl</u> with Sen: 0,83-0,90 and Spe: 0,90-0,96 SRF increases of <u>0.6-6.4nl</u> with Sen: 0,84-0,94 and Spe: 0,89-0,96 SRF decreases of <u>6.4-9.3nl</u> with Sen: 0,93-0,98 and Spe: 0,87-0,95

Conclusion:

- Al-based fluid analysis permits to determine the accuracy of human experts from different professional backgrounds in grading retinal fluid types and their changes over time.
- The introduction of such objective, quantitative parameters results in a consistent and exact management, irrespective of the treating physicians' background.

Figure 2: SD-OCT images of a patient show three b-scans at the same position, at visit 1 (first column) and visit 2 (second column). There was an SRF increase of approx. 100nl from visit 1 to visit 2, as quantified by the algorithm (blue segmentations).

However, most graders indicated ,SRF decrease'. This discrepancy might be due to the obvious reduction of a larger SRF pocket seen in the first row as well as an underestimation of multiple narrow and elongated SRF pockets at visit 2 (row 2 and 3).

