Advances in quantifications of outer retinal layers in Geographic Atrophy comparing High-Res and conventional SPECTRALIS OCT

Sophie Frank ${ }^{1}$, Gregor S. Reiter ${ }^{1}$, Philipp Fuchs ${ }^{1}$, Leonhard M. Coulibaly ${ }^{1}$, Oliver Leingang ${ }^{1}$, Markus Gumpinger ${ }^{1}$, Hrvoje Bogunović², Ursula Schmidt-Erfurth ${ }^{1}$
${ }^{1}$ Department of Ophthalmology and Optometry, Medical University of Vienna, Austria
${ }^{2}$ Christian Doppler Lab for Artificial Intelligence in Retina, Department of Ophthalmology, Medical University of Vienna, Austria
Purpose

Quantification of Geographic Atrophy (GA) biomarkers in optical coherence tomography
(OCT) becomes more important due to puture

The aim of this study was to investigate differences between standard and advanced devices with varying axial resolution in outer retinal layer segmentations in GA.
Methods
Differences in layer quantifications between the High-Res OCT and the SPECTRALIS HRA+OCT were evaluated (Figure 1, both devices by
Heidelberg Engineering, Heidelberg, Germany)
Technical differences are listed in Table 1

	SPECTRALIS OCT	High-Res OCT
Axial Resolution	$7 \mu \mathrm{~m}$	$3 \mu \mathrm{~m}$
Lateral Resolution	$14 \mu \mathrm{~m}$	$14 \mu \mathrm{~m}$
Speed	85 kHz	85 kHz
IcG Laser	Yes	No
Infrared Laser	815 nm	730 nm
Multicolor	468/518/815 nm	$468 / 518 / 730 \mathrm{~nm}$
Power	$1,2 \mathrm{~mW}$ at 880 nm	$2,2 \mathrm{~mW}$ at 850 nm
Table 1: Technical differences between devices		
		n
Total no. of patient/s/yes		12/17
Female (\%)		11 (65\%)
Mean age (range)		7.4 (67.1-90.3)

Table 2: Patient characteristics
References
$77.4(67.1-90.3)$

All patients fulfilled complete retinal pigment epithelium (RPE) and outer retina
atrophy (cRORA) criterial atrophy (cRORA) criteria

Imaged with both devices using a $\mathbf{2 0}^{\circ} \times \mathbf{2 0}$

 scan pattern (49 or 97 B-Scans)RPE,
photoreceptors (PR) (EZ+IZ), (ELM) and subretinal drusenoid deposits (SDD)
presegmented in all B-Scans using automated algorithms ${ }^{2,3}$ and
manually corrected in 49 B -Scans/OCT

Layer thickness and loss area, and

 SDD volume were calculated
Comparison between devices using a

 mixed effect modelFioure 1-Mothons

Figure 1 : Methods:
Figure 1: Methods,
EZ=Ellipsoid Zone, IZ=Interdigitation Zone

Results

RPE thinner in High-Res ($\mathfrak{p}<0.001$)
$16.00 \mu \mathrm{~m}$ ($95 \% \mathrm{Cl} 15.18-16.81$) vs. $21.66 \mu \mathrm{~m}$ ($95 \% \mathrm{Cl} 20.85-22.48$)
PR layer thicker in High-Res ($p<0.001$)
$27.37 \mu \mathrm{~m}$ ($95 \% \mathrm{CI} 20.36-34.38$) vs. $25.78 \mu \mathrm{~m}$ ($95 \% \mathrm{Cl} 18.77-32.79$)
Myoid Zone + ELM thinner in High-Res ($p<0.001$)
$19.42 \mu \mathrm{~m}(95 \% \mathrm{Cl} 17.77-21.08)$ vs. 21.54 pm ($95 \% \mathrm{Cl}$ 19.89-23.20)
PR integrity loss smaller in High-Res ($\mathrm{p}=0.012$)
$7.18 \mathrm{~mm}^{2}$ (95\%CI $0.65-13.71$) vs. $8.09 \mathrm{~mm}^{2}$ ($95 \% \mathrm{Cl} 1.56-14.63$)
No significant differences found for RPE, ELM loss or SDD volume

Conclusion

High-Res OCT with superior axial resolution provides an improved distinction of layers and PR integrity loss.

The enhanced boundaries of the Interdigitation zone and Bruch's membrane result in thinner RPE and a thicker PR layer in the High-Res OCT (Figure 2).

Higher axial resolution could help
investigate retinal morphology in vivo
improve individualized patient management

Figure 2: Patient with geographic atrophy; A, B OCT B-Scans acquired with SPECTRALIS HRA+OCT; C, D B-Scans acquired with High-Res OCT; B, D B-Scans with Layer segmentation of the outer (orange) and inner (red) border of retinal pigment epithelium, the outer (yellow) and inner (green) border of photoreceptors and the external limiting membrane (blue)

[^0]
[^0]:

