

Advances in quantifications of outer retinal layers in Geographic Atrophy comparing High-Res and conventional SPECTRALIS OCT

Department of Ophthalmology and Optometry, Medical University of Vienna, Austria ² Christian Doppler Lab for Artificial Intelligence in Retina, Department of Ophthalmology, Medical University of Vienna, Austria

Purpose

Quantification of Geographic Atrophy (GA) biomarkers in optical coherence tomography (OCT) becomes more important due to promising therapeutic options in the near future.

The aim of this study was to investigate differences between standard and advanced devices with varying axial resolution in outer retinal layer segmentations in GA.

Methods

Differences in layer quantifications between the High-Res OCT and the SPECTRALIS HRA+OCT were evaluated (Figure 1, both devices by Heidelberg Engineering, Heidelberg, Germany) Technical differences are listed in Table 1.

	SPECTRALIS OCT	High-Res OCT
Axial Resolution	7 μm	3 μm
Lateral Resolution	14 µm	14 µm
Speed	85 kHz	85 kHz
ICG Laser	Yes	Νο
Infrared Laser	815 nm	730 nm
Multicolor	468 / 518 / 815 nm	468 / 518 / 730 nm
Power	1,2 mW at 880 nm	2,2 mW at 850 nm

Table 1: Technical differences between devices

	n
Total no. of patients/eyes	12/17
Female (%)	11 (65%)
Mean age (range)	77.4 (67.1-90.3)

Table 2: Patient characteristics

References

¹Sadda et al., Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology, 2018. ²Orlando et al., Automated Quantification of Photoreceptor alteration in macular disease using Optical Coherence Tomography and Deep Learning. Sci Rep, 2020. ³Garvin et al., Automated 3-D Intraretinal Layer Segmentation of Macular Spectral-Domain Optical Coherence Tomography Images. IEEE Transactions on Medical Imaging, 2009.

All patients fulfilled complete retinal pigment epithelium (RPE) and outer retinal atrophy (cRORA) criteria¹

Imaged with both devices using a 20°x20° scan pattern (49 or 97 B-Scans)

RPE, photoreceptors (PR) (EZ+IZ), external limiting membrane (ELM) and subretinal drusenoid deposits (SDD)

presegmented in all B-Scans using automated algorithms^{2,3} and manually corrected in 49 B-Scans/OCT

Layer thickness and loss area, and **SDD volume** were calculated

Comparison between devices using a mixed effect model

Figure 1: Methods; EZ=Ellipsoid Zone, IZ=Interdigitation Zone

Sophie Frank¹, Gregor S. Reiter¹, Philipp Fuchs¹, Leonhard M. Coulibaly¹, Oliver Leingang¹, Markus Gumpinger¹, Hrvoje Bogunović², Ursula Schmidt-Erfurth¹

photoreceptors and the external limiting membrane (blue).