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Abstract

Biomarkers constitute an essential building block of precision medicine, since they are
important for diagnosis, treatment guidance and patient management. At the same time,

there exists a lack of e�ective biomarkers in various diseases, highlighting the importance of
biomarker discovery. Optical coherence tomography (OCT) is a non-invasive imaging modal-
ity that allows to assess morphological conditions and changes of the retina, and is currently
one of the most important diagnostic modalities in ophthalmology. In particular, age-related
macular degeneration (AMD) is one of the leading causes of blindness in the world. While
its clinical signs are observable in OCTs, the underlying pathogenic mechanisms are not yet
fully understood, meaning that there might be relevant structures that have not been discov-
ered so far. In this context, automated medical image analysis approaches o�er the potential
of e�ciently exploring imaging data to detect and evaluate biomarkers. Particularly deep
learning is a powerful branch of state-of-the-art data-driven machine learning techniques,
which are capable of learning complex relationships directly from data.

In this thesis, the main purpose is to develop and evaluate novel deep learning techniques
for automated identi�cation of new biomarker candidates in retinal OCT images, without the
use of manual labels. First we propose an unsupervised deep learning method that is trained
on unlabeled data to learn healthy anatomical appearance for detection and categorization
of anomalies, which form biomarker candidates. We demonstrate that the identi�ed marker
candidates are stable, show predictive value in the task of detecting disease and align with
our current understanding of disease course. �e second developed method exploits a novel
way to improve anomaly detection in retinal OCT images, using Bayesian deep learning.
Information about healthy anatomical appearance is jointly used with epistemic uncertainty
estimates to detect deviations from normal, achieving results that clearly outperform other
state-of-the art methods. �e third method is trained in an unsupervised way on large
amounts of unlabeled data to learn disease speci�c features from OCTs. �e model both
captures local characteristics of the retina and learns low-dimensional global representations
of whole OCT volumes. We demonstrate that the learned features correlate well with already
known biomarkers, as well as features that had not been considered yet in clinical practice,
i.e. features that form new biomarker candidates. Additionally, the results show that the
learned features correlate be�er with visual function than established makers.

�e proposed methods were trained and evaluated on OCT imaging data of the human
retina, particularly in patients su�ering from AMD. We demonstrate that the proposed
techniques are e�ective for identifying disease marker candidates in retinal OCT images.
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Kurzfassung

Biomarker sind ein wesentlicher Bestandteil der Präzisionsmedizin, da sie sowohl für
Diagnose und �erapie als auch für Patientenmanagement wichtig sind. Gleichzeitig

fehlt es bei vielen Krankheiten an e�ektiven Biomarkern, was die Bedeutsamkeit der Er-
forschung und Entdeckung von Biomarkern unterstreicht. Optische Kohärenztomogra�e
(OCT) ist eine nicht-invasive Bildgebungsmodalität, mit der morphologische Zustände und
Veränderungen der Netzhaut beurteilt werden können, und ist derzeit eine der wichtigsten
diagnostische Modalitäten in der Ophthalmologie. Insbesondere ist altersbedingte Makula-
degeneration (AMD) eine der weltweit häu�gsten Ursachen für Erblindung. Während die
klinischen Symptome in OCT Bildern sichtbar werden, sind die zugrunde liegenden pathoge-
nen Mechanismen noch nicht vollständig erforscht. Dies bedeutet, dass relevante Strukturen
im Bild vorhanden sein könnten, deren klinischer Wert bis jetzt noch nicht erkannt wurde.
In diesem Zusammenhang bieten automatisierte Methoden der medizinischen Bildanalyse
die Möglichkeit Bilddaten e�zient zu erforschen, Biomarker zu erkennen und zu analysieren.
Insbesondere Deep Learning ist ein leistungsfähiger Zweig von State of the Art datengetrie-
benen Machine Learning Methoden, die in der Lage sind komplexe Beziehungen direkt aus
den Daten zu lernen.

Das Hauptziel dieser Doktorarbeit besteht in der Entwicklung und Evaluierung neuartiger
Deep Learning Methoden zur automatisierten Identi�zierung neuer Biomarker-Kandidaten
in OCT Bildern der menschlichen Netzhaut. Zunächst stellen wir ein unüberwachtes Lernver-
fahren vor, welches auf Daten ohne manuelle Annotierungen trainiert wird. Dabei wird das
normale anatomische Erscheinungsbild gelernt, um dann Anomalien erkennen und katego-
risieren zu können, welche Biomarker-Kandidaten darstellen. Wir zeigen, dass die identi�-
zierten Markerkandidaten stabil erfasst werden, einen prädiktiven Wert bei der Erkennung
von Krankheiten aufweisen und mit unserem derzeitigen Verständnis des Krankheitsverlaufs
übereinstimmen. Die zweite entwickelte Methode nutzt einen neuartigen Ansatz, um die
Erkennung von Anomalien in retinalen OCT-Bildern mithilfe von Bayesian Deep Learning
zu verbessern. Informationen über ein gesundes anatomisches Erscheinungsbild werden ge-
meinsam mit Schätzungen der bayesschen Unsicherheit verwendet, um Abweichungen vom
Normalzustand (Anomalien) zu erkennen. Dabei zeigen die Ergebnisse, dass die entwickelte
Methode besser als andere State of the Art Ansätze in Bezug auf Anomaliedetektion funk-
tioniert. Die dri�e Methode wird auf großen Datenmengen ohne manuelle Annotierungen
trainiert (unüberwachtes Lernen), um krankheitsspezi�sche Merkmale aus OCT-Bildern zu
lernen. Das Modell erfasst lokale Merkmale der Netzhaut und ermöglicht gleichzeitig eine
niedrigdimensionale Darstellung des gesamten OCT-Volumens. Es wird gezeigt, dass die
gelernten Merkmale gut mit bereits bekannten Biomarkern korrelieren, welche aktuell in
der klinischen Praxis verwendet werden. Gleichzeitig werden auch neue Merkmale gelernt,
die in der klinischen Praxis bis jetzt noch nicht berücksichtigt wurden (d.H. Merkmale, die
neue Biomarker-Kandidaten bilden). Darüber hinaus zeigen die Ergebnisse, dass die erlernten
Marker-Kandidaten besser mit der Sehleistung korrelieren als etablierte Marker.
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Die in dieser Doktorarbeit entwickelten Methoden wurden an OCT-Bilddaten der mensch-
lichen Netzhaut trainiert und ausgewertet. Hierbei vorrangig bei Patienten, die an AMD lei-
den. In diesem Zusammenhang zeigen wir, dass die präsentierten Methoden in der Lage sind
neue Biomarker-Kandidaten in retinalen OCT-Bildern zu entdecken.
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CHAPTER1
Introduction

“Most people fail in life

not because they aim too high and miss,

but because they aim too low and hit.”

– Les Brown

In this thesis, we present novel conceptual and methodological contributions in the �eld of
biomarker discovery. In particular, the proposed approaches provide di�erent strategies to

identify marker candidates. �ey are based on machine learning techniques and are evaluated
in the context of retinal images, namely optical coherence tomography (OCT) scans. First,
Section 1.1 provides a compact description of the motivation. Second, we give a general
introduction into the topic of medical image analysis and machine learning in Section 1.2.
�ird, the problem de�nition and aims of this thesis are presented in Section 1.3. Finally, the
contributions of our work are summarized in Section 1.4 and a thesis outline is provided.

1.1 Motivation

A systematic review of the World Health Organization (WHO) revealed that 285 million peo-
ple are a�ected by visual impairment worldwide, with 246 million su�ering from low vision
and 39 million from blindness (Pascolini and Mario�i, 2012). Due to the global phenomenon
of natural aging and the number of humans 50 years or older is 65% for all visual impaired and
82% for all blind people, the prevalence of these cases is expected to grow in the future (Pas-
colini and Mario�i, 2012). In Europe alone, the WHO reported in 2010 that nearly 3 million
were blind and over 28 million were a�ected in total by visual impairment (Pascolini and
Mario�i, 2012, Prokofyeva and Zrenner, 2012).

Several meta-analyses and large-scale population-based studies have shown that among
the leading causes of blindness in Europe, AMD is the most frequent (26%), followed by
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Biomarker discovery

Patient specific decision

based on knowledge

Patient population

(patients + images)
Treatment A

Treatment B

Treatment C

tailored

therapy

Knowledge

Precision Medicine:

Figure 1.1: Precision medicine workflow and the role of biomarker discovery. The basic idea
of precision medicine is to perform treatments optimized for each patient, based on individ-
ual characteristics and biomarker manifestations. The identification of hitherto unknown
imaging biomarkers improves precision medicine and therefore individual patient care, in
particular diagnosis and clinical decision processes. The aim of this thesis is to develop and
explore innovative methods based on machine learning to detect new biomarker candidates
in imaging data. This supports a critical shi� in medicine, where imaging data and medical
image analysis are jointly used for proactive hypothesis development.

glaucoma (20.5%) and diabetic retinopathy (DR) (8.9%) (Prokofyeva and Zrenner, 2012). With
25-30 million a�ected people, AMD is the most common cause of severe vision loss worldwide,
showing a prevalence of 9% (Prokofyeva and Zrenner, 2012, Wong et al., 2014).

Since early stages of AMD usually start without symptoms, it is prone to late diagnosis
at a level where pathological processes have already altered the healthy structure of the
retina. Moreover, traditional techniques for diagnosing AMD such as the visual acuity test
(Section 2.1.2) or the Amsler grid test (Fine et al., 2000) detect AMD at a stage where vision
has already been a�ected by the disease. �is means that people already su�er from a vision
loss at the timepoint of initial treatment. In addition, 44% of all people show some degree
of vision loss between the referral assessment and the beginning of treatment, where this
timespan is around 28 days in Europe (Klein et al., 2008). �is is of particular relevance, since
vision loss is o�en not retrievable (Schmidt-Erfurth et al., 2018b).

OCT (Huang et al., 1991) provides a detailed three-dimensional high-resolution image of
the retina and allows to inspect its condition at a µm resolution. It is a non-invasive imaging
technique and currently the most important diagnostic modality in ophthalmology. It is
widely used in the clinic, with 30 million OCT acquisitions conducted annually, or one scan
carried out every second worldwide. �ese numbers are on par with other imaging modalities
such as computed tomography (CT), magnetic resonance imaging (MRT) or positron emission
tomography (PET) (Fujimoto and Swanson, 2016). Among others, AMD manifests in changes
that can be observed within OCTs. Hence, the scans are analyzed by physicians to perform
diagnosis, determine treatment or infer other clinical decisions (Fujimoto and Swanson, 2016).
However, limited predictive capability is currently inherent in known clinical signs that are
visible (Schmidt-Erfurth et al., 2018b). Moreover, the underlying pathogenic mechanisms in
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AMD are not yet fully understood (Schmidt-Erfurth and Waldstein, 2016), which leads to the
conclusion that there might be unknown pa�erns or structures that have not been discovered
so far. Another key factor is that researchers are overwhelmed by the massive amount of
data, given the large number of OCTs in connection with millions of pixels per volume. As
a consequence, manual inspection and analysis of these scans is practically impossible on a
large-scale basis. In addition, diagnostics and clinical decisions may vary between physicians
due to di�erences in professional experience, image quality, workload, time restrictions and
the lack of consensus regarding the relevant imaging biomarkers. �ese markers are not only
needed to enable an e�cient management of the leading diseases such as diabetic retinopathy
or age-related macular degeneration, but also to allow diagnosis and consequently treatment
at the earliest possible stage, optimized for individual patients (Figure 1.1). Early diagnosis
and an individualized treatment can be critical with respect to the prevention of potentially
irreversible loss of function such as central vision, the success of therapy, reducing the overall
burden of patients and lowering the �nancial load on the clinical health care system. In other
words, the discovery of expressive imaging biomarkers is an essential building block towards
precision medicine (Wang et al., 2017).

In this context, medical image analysis and machine learning o�er the potential of auto-
mated exploration of large-scale imaging data to identify, analyze and evaluate new biomarker
candidates, as discussed in the following (Section 1.2).

1.2 Medical Image Analysis

In the �eld of medical image analysis, medical problems are analyzed based on biomedical
image data and digital image analysis. �e �eld of medical image analysis emerged in the
early 90s as its own separate new discipline (Wells III, 2016). �is evolution was driven by
the unique problem se�ing and characteristic of medical imaging in this area of study. �e
high-dimensional nature of imaging data, the statistic variability of normal and abnormal
recordings, the heterogeneity of physical and physiological properties of the human body
which are measured, the various types of image information that are acquired, the nonrigid
characteristic of object motion and deformation as well as the three-dimensional property of
image data are some examples for this uniqueness (Duncan and Ayache, 2000). �ese special
characteristics together with additional potential requirements such as using image analysis
as part of the clinical work�ow constrains both the analysis and the selection of applicable
algorithms (Toennies, 2017).

In this context, the application of machine learning methods allows to analyze large
amounts of image data in an automated way (Duncan and Ayache, 2000, Lambin et al., 2012).
Machine learning is de�ned as the �eld of algorithms that involve autonomous learning of
a model based on data, to progressively improve the performance on a given task. A more
detailed explanation of machine learning concepts is provided in Section 3.1. For instance,
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machine learning methods enable the generation of results that are objective and reproducible,
allow to increase diagnosis accuracy or to visualize complex correlations and pa�erns (Doi,
2007, Langs et al., 2011, Wang et al., 2010). Furthermore, morphological and functional
properties as well as relationships are discovered and analyzed (Achterberg et al., 2014, Vogl
et al., 2017b).

Recently, a speci�c subgroup of machine learning techniques has shown impressive re-
sults in various medical tasks: deep learning. For instance, Kooi et al. (2017) proposed the
detection of mammographic lesions using large scale deep learning, performing on par with
certi�ed screening radiologists on a patch level. Grewal et al. (2018) proposed a deep learning
based approach to conduct hemorrhage detection in CT scans, approaching the detection ac-
curacy of radiologists. Dermatologist-level classi�cation accuracy of skin cancer was achieved
by a deep neural network in Esteva et al. (2017), which was trained on 129,450 labeled images.
Rajpurkar et al. (2017) developed a deep learning algorithm for pneumonia detection in chest
x-ray images that achieved performance comparable to radiologists.

In general, medical imaging and its analysis can help to identify sub-groups of patients
with varying risk pro�les, progression paths and treatment responses. �is forms a corner-
stone of precision medicine, targeting individualized treatment for each patient in order to
obtain the best possible treatment response (European Society of Radiology, 2015, Wang et al.,
2017). As illustrated in Figure 1.1, identifying expressive biomarkers is essential to distin-
guish sub-groups with di�ering treatment response, and is a primary challenge in precision
medicine (European Society of Radiology, 2015, Wang et al., 2017).

1.3 Problem definition and thesis aims

Although impressive results have been achieved in the �eld of medical image analysis (Sec-
tion 1.2), the overall progress in medical image analysis has been slower (Wells III, 2016).
Besides the speci�c requirements and the unique problem se�ing in medical imaging, the
lack of large-scale labeled data in many medical image analysis, which are available in com-
puter vision on natural images poses another challenge (Wells III, 2016). �e requirement of
labeled training data can be a crucial limitation for multiple reasons. �ey can be costly or
even unfeasible to obtain in some clinical se�ings, may su�er from inter- and intra-grader
variability (Asman and Landman, 2011), or restrict the exploration of potential biomarkers to
a pre-de�ned set of marker categories. In this thesis, we explore the potential of identifying
biomarkers without the use of manual labels. Speci�cally, the thesis aims are as follows:

Aim 1 - Anomalies as a means to focus on disease e�ects. Develop a method to segment
biomarker candidates on pixel level in an unsupervised way, omi�ing the need for man-
ual annotations to train a model. �e method should distinguish normal from abnormal
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image regions, assuming that the detected anomalies represent biomarker candidates
capturing relevant disease characteristics (Chapter 5).

Aim 2 - Anatomical knowledge to enhance anomaly detection. Exploit knowledge about
normal anatomy and its variability in addition to imaging data to improve anomaly
detection (Chapter 6).

Aim 3 - Representing di�erent levels of detail in imaging data. Represent both pheno-
typical and disease related image characteristics in a patient population to exploit it
for biomarker discovery. �is compact representation of imaging data should jointly
capture disease e�ects and normal anatomical variability on di�erent levels of detail
to aid hypothesis generation (Chapter 7).

A main goal of this thesis is the exploration of di�erent strategies, methods and models
to identify biomarker candidates in medical images. Speci�cally, we develop deep learning
techniques in the context of retinal OCT images that can be trained without manually anno-
tated labels. Deep learning (Section 3.2) is a speci�c branch of machine learning capable of
automatically learning feature representations from data, instead of relying on hand-cra�ed
features for a given task. In this thesis, we develop and present three deep learning methods
that tackle the aims listed above.

1.4 Contribution and thesis outline

�e thesis is divided into 8 chapters. It begins with a general overview, including the moti-
vation, an introduction to medical image analysis and scope of the thesis. In Chapter 2 we
provide the clinical background of this work. �e anatomy and physiology of the human
eye is discussed, with particular focus on the retina and its anatomical components. We then
describe techniques which are currently available to measure visual function. Furthermore,
insights about retinal diseases and its progression pathways are provided, with special em-
phasis on age-related macular degeneration (AMD). State-of-the-art treatments are covered
as well, including potentials and limitations of actual disease handling. We also provide a
description of the imaging technique OCT, underlying its value for diagnosis and patient
management in the �eld of ophthalmology. In the last part of Chapter 2, an introduction to
clinical trial endpoints with focus on retinal studies is given.

Chapter 3 presents the methodological background of this thesis. First, machine learn-
ing fundamentals are presented. Training principles of machine learning models and in-
volved components are described. Varying training paradigms such as supervised, weakly-
supervised or unsupervised learning are introduced. Secondly, we give an overview about
deep learning principles, since all methods proposed in this thesis are based on deep learning.
To emphasize the di�erence to conventional machine learning approaches, basic building
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blocks, training and optimization dogmas, the principle of uncertainty estimations as well as
more detailed descriptions of essential architectures of deep learning such as convolutional
neural networks (CNNs) are provided. Finally, statistical evaluation measures that are com-
monly used in medical image analysis are discussed, forming the foundation with respect to
the evaluation of methods conducted in this doctoral thesis.

�e scope of Chapter 4 is to provide an overview about di�erent strategies regarding
image biomarker discovery. Advantages, potentials as well as limitations are discussed for
each category.

�e contribution of this thesis is structured around three manuscripts. �e �rst one is
presented in Chapter 5: ”Unsupervised Identi�cation of Disease Marker Candidates in Retinal
OCT Imaging Data”. An unsupervised deep learning method is proposed to identify marker
candidates in imaging data. In a �rst step, anomaly detection is performed. In spectral-domain
OCT images, anomalous candidates are separated from normal tissue based on features
learned by an unsupervised deep auto-encoder on healthy samples, modeling the normal
appearance distribution with a One-Class support vector machine (SVM). In a second step,
stable categories of frequently occurring anomalies are identi�ed using clustering, and their
link to disease is evaluated. Results also demonstrate that these marker candidates show
some predictive value in the task of detecting disease. While part of the categories could be
mapped to known structures by retinal experts in a qualitative evaluation, others remain as
novel data driven marker candidates.

�e second manuscript ”Epistemic Uncertainty of Anatomy Segmentation for Anomaly
Detection in Retinal OCT” is presented in Chapter 6. Here, we propose a novel approach for
anomaly detection exploiting uncertainty estimates of a Bayesian deep learning model. Weak
labels (Section 3.1.3) are used to train a model for segmenting the anatomy of healthy subjects.
Based on the assumption that uncertainties correlate with areas which are not present in the
healthy training set, anomalies are detected. Results show that this technique outperforms
previous state-of-the-art methods in anomaly detection in OCTs.

Chapter 7 presents the third manuscript ”A paradigm shi� in retinal biomarker identi�ca-
tion by unsupervised deep learning”. �erein a two-level unsupervised deep learning approach
is trained on a large-scale dataset of retinal OCT images. While the �rst level learns a local
representation of morphology, the second level forms a global low-dimensional represen-
tation of the whole OCT volume. Results demonstrate that some of the identi�ed features
correlate well with already known biomarkers traditionally used in clinical practice, while
others form new biomarker candidates that had not been considered yet in clinical practice.
Furthermore, results show that the learned features correlate be�er with visual function than
the established makers.

Finally, we provide a discussion and conclusion in Chapter 8, summarizing our methods
and main results, relating the three presented methods with each other and pointing out
future research lines that can be derived from our contributions.
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CHAPTER2
Clinical Background and Retinal

Imaging

“No one can lie,

no one can hide anything,

when he looks directly into someone’s eyes.”

– Paulo Coelho

In this Chapter, the clinical background of our work is presented. We provide a brief
explanation of the anatomy of the eye with focus on the retina (Section 2.1.1), an overview

of techniques to measure visual function (Section 2.1.2), an introduction to speci�c retinal
diseases (Section 2.1.3) and an overview of current treatment options (Section 2.1.4). Since the
focus of this thesis lies on the discovery of imaging biomarkers in OCT scans, a description of
OCT acquisition principles is provided in Section 2.2. Finally, an introduction to clinical trial
endpoints with focus on retinal studies is given in Section 2.3, which provides an overview
on the interaction of biomarker discovery and treatment of patients, study design as well as
drug development in the context of retinal diseases.

2.1 Clinical Background

An introduction to the anatomy of the eye delivers the necessary background knowledge
to understand the principles and characteristics of retinal diseases and relevant function
measures, which are used to assess the functional impact of retinal diseases. Moreover,
an overview and discussion of treatment options and its challenges provides the basis to
understand the importance of biomarker discovery in the context of retinal diseases.
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Figure 2.1: Schematic overview of the anatomy of the human eye. Source: Commons (2018b).

2.1.1 The Anatomy of the Eye

Along the various senses in humans, vision is among the most important (Rajamanickam,
2007). �e complex system of visual sense involves two organs, the eyes and the brain. A
schematic illustration of the eye is depicted in Figure 2.1. It is a spherical structure that is
composed of two main parts, the anterior and posterior segments. �e approaching light of
the environment is focused by the anterior segment of the eye, while the posterior segment
converts the light into electrical impulses that are sent to the brain (Savino and Danesh-Meyer,
2012).

�e anterior segment is visible from outside and is composed of the cornea, the iris, the
lens and the ciliary body (upper half of Figure 2.1) (Kaufman et al., 2011). �e cornea is the
front transparent surface of the eye and is the �rst structure that is hit by incoming light. Its
main function is to refract the light towards the lens of the eye. �e iris is a muscle tissue
that surrounds the pupil, where the color of the iris is explained by the pigment cells present
in these muscles. �e pupil is an opening that is seen as a black circle, its diameter controlled
by contraction and dilation of separate muscles. �is determines the amount of light that
enters the eye, allowing more when its darker or less in case of strong illumination (Kaufman
et al., 2011). �e lens has a biconvex form and focuses the light onto the retina. Its shape
can be changed by contraction of the ciliary body, a muscle that is connected to the lens
by the ciliary �bers. In addition to this function regarding accommodation, the cells of the
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ciliary body also secrete the �uid that �lls both the anterior and posterior chamber of the
eye. �is �uid also known as aqueous humor provides nutrients to the ocular structures and
out�ows through the trabecular meshwork, a connective tissue. �e intraocular pressure
is determined by the amount of aqueous humor produced and drained o� (Kaufman et al.,
2011).

�e posterior segment is surrounded by fat tissue that has a protective function, while a set
of extrinsic extraocular muscles allows to move the eye. �e posterior segment is composed of
the vitreous and three layers enclosing it: the sclera, the choroid and the retina (Kaufman et al.,
2011). �e vitreous chamber contains a jelly-like material called vitreous humor that helps to
maintain the spherical shape of the eye (Purves et al., 2001). �e outermost layer surrounding
the vitreous is the sclera, a white �brous tunic that gives the eye its structural strength.
Together with the cornea it makes up the outer tunic of the eye. �e choroid is a vascular
layer, supporting the eye with blood and oxygen using a network of thin capillaries (Kaufman
et al., 2011). It is located between the sclera and the innermost layer, the retina.

�e retina is a thin multi-layered sensory membrane that transforms the incoming light
into nerve impulses which are then sent to the brain. Topographically, the main structures
of the retina are the optic disc, the macula and the fovea. �e optic disc is the location
where the retinal blood vessels and the nerve �bers enter the eye. �is is also known as
blind spot, since this area does not contain any photoreceptors. �e retinal vessels are
responsible for approximately 20% of the blood needed by the retina, and provide nutrition
from the top (Henkind et al., 1979, Hildebrand and Fielder, 2011). �e remaining part of
the blood is supplied from the bo�om by the choroid. �e macula is a yellow region of
about 4.5-6mm in diameter in adults and accounts for almost all photopic vision (Provis et al.,
2005). �e central part of the macula is called the fovea, representing the region of greatest
visual acuity (Oyster, 1999). �is is explained by the fact that the fovea is characterized by
the highest density of photoreceptors in the retina. Moreover, due to the high density of
receptors no retinal capillaries are located in the central 0.5mm, meaning that this central
region depends solely on the blood supply from the choroid. �e fovea is about 0.35mm in
diameter and is characterized by a depression in the retina (Figure 2.6, on the le�, central
depression of the ”normal retina”).

�e cellular organization of the retina is depicted in Figure 2.2, showing its layered struc-
ture. �e light enters from the vitreous, passes the ganglion cells and the interneurons before
activating the photoreceptors in the outermost part of the retina near the choroid. Below
the photoreceptors, the retinal pigment epithelium (RPE) acts as a blood-retina barrier, rep-
resenting a selective barrier between the choriocapillaris and the photoreceptors. It is one of
the most metabolically active tissues of the body and has a crucial supportive function for
the photoreceptors. Bruch’s membrane (BM) separates the RPE from the choroid and acts as
an molecular sieve: e.g. oxygen, nutrients or metabolic waste products are partly regulated
by the BM (Hildebrand and Fielder, 2011, Kaufman et al., 2011).
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Figure 2.2: Schematic illustration of the layered structure of the human retina. Modified
from source: Commons (2018a).

�ere are two types of photoreceptor cells: cones and rods. �e human retina contains
around 4-5 million cones and 77-107 million rods (Hildebrand and Fielder, 2011). Both types
of photoreceptor cells have a long and elongated shape to maximize light sensitivity (Curcio
et al., 1990). �ey consist of an outer segment, inner segment, a nucleus, an inner �ber and a
synaptic terminal, which provide the basis for the layer names depicted in Figure 2.2 (outer
segment (OS), inner segment (IS), outer nuclear layer (ONL), outer plexiform layer (OPL)). �e
photon-sensitive pigment that produces a biochemical signal is located in the outer segment,
while the metabolic requirements of the photoreceptors are met by the inner segment. A�er
transposing the biochemical into an electric signal, it is transferred via the inner �ber to
the synaptic terminal located in the OPL. �e electric signals of the photoreceptors are
transmi�ed to the ganglion cells through the inner nuclear layer (INL) and the inner plexiform
layer (IPL). �e interneuron cells (bipolar, horizontal and amacrine) in these layers (INL, IPL)
process the signals, integrating and regulating certain pa�erns before sending the resulting
activation to the ganglion cells (Hildebrand and Fielder, 2011). Müller cells compose the main
part of retinal glial cells in the INL, that serve as support for the interneuron cells. Finally,
the visual information from the retina is transmi�ed by the ganglion cells through the optic
nerve to the brain (Hildebrand and Fielder, 2011, Vilensky et al., 2015).

�e �rst type of photoreceptor cells, the cones, enable to distinguish colors and are re-
sponsible for the �ne-detailed view. �ey are mainly located in the fovea, the center of the
macula, whereas rods are predominate in the peripheral part of the retina. Cones need a
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higher amount of illumination to get activated, meaning that they are crucial for vision under
bright light conditions. On the other hand, rods are much more sensitive to light but are not
able to distinguish di�erent wavelengths. Since they register the intensity of the incoming
light with high sensitivity and are not located in the fovea, rods are relevant for peripheral
and scotopic vision (vision under dark conditions) (Hildebrand and Fielder, 2011).

In summary, the incoming light is refracted and focused onto the retina by the cornea
and the lens. �e amount of light that enters the eye is controlled by the iris. �e light is
then translated from biochemical signals into action potentials by the photoreceptors and
forwarded through the interneuron to the ganglion cells. �e �nal signal is then transmi�ed
via the optic nerve to the brain.

2.1.2 Visual Function Measures

Besides visual acuity being the most commonly used measure of visual function, there ex-
ist other techniques such as contrast sensitivity, visual �eld test or microperimetry. When
performing biomarker discovery in retinal images, it is important to understand the �eld of
application, advantages and limitations of currently used function measures. When evalu-
ating the relationship between biomarker candidates and visual function, it is important to
choose an appropriate measurement. For instance, visual acuity remains relatively una�ected
in early stages of AMD, while microperimetry is more sensitive in this case (Wu et al., 2014).

Figure 2.3: The logMAR chart, used
to measure best corrected visual acuity
(BCVA). Each line contains five le�ers.
The distance between lines as well as the
size of le�ers decreases logarithmically.
Source: Commons (2015).

LogMAR VAR Snellen
(Metric)

Snellen
(Imperial)

Dezimal Number
of le�ers

-0.30 115 6/3 20/10 2.00 100
-0.20 110 6/3.8 20/12.5 1.60 95
-0.10 105 6/4.8 20/16 1.25 90
0.00 100 6/6 20/20 1.00 85
0.10 95 6/7.5 20/25 0.80 80
0.20 90 6/9.5 20/32 0.63 75
0.30 85 6/12 20/40 0.50 70
0.40 80 6/15 20/50 0.40 65
0.50 75 6/19 20/63 0.32 60
0.60 70 6/24 20/80 0.25 55
0.70 65 6/30 20/100 0.20 50
0.80 60 6/38 20/125 0.16 45
0.90 55 6/48 20/160 0.125 40
1.00 50 6/60 20/200 0.10 35
1.30 35 6/120 20/400 0.05 20
1.60 20 6/240 20/800 0.025 5
2.00 0 6/600 20/2000 0.01 –

Table 2.1: Conversion table between di�er-
ent visual acuity scoring systems.

BCVA Best corrected visual acuity (BCVA) is the most commonly used measure of visual
function (Collin, 2008). In principle, patients are asked to read ”normally” illuminated charts
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Figure 2.4: Schematic illustration of applying a neutral density filter.

from a speci�ed distance. �e term ”best corrected” refers to the fact that refraction of patients
is corrected, so hyperopia (farsightedness) or myopia (shortsightedness) should not in�uence
the test result. �ere are various chart types, for instance a Bailey-Lovie (Bailey and Lovie,
1976) or ETDRS (Ferris III et al., 1982) chart, which are so called logMAR charts (Figure 2.3).
�e testing distance has to be de�ned as well: typical distances are 4 or 6 meters (Ellio�, 2016).
Furthermore, the type of refractive correction must be determined, indicating whether the
habitual visual acuity (using the patients own lenses or glasses) or a more speci�c correction
has been used. Another detail that has to be speci�ed is the amount of illumination used
for the chart (Ferris and Sperduto, 1982). A so called termination rule is also necessary to
achieve a reliable measurement. A typical rule is to stop the patient if four or more errors
occur within a line of �ve le�ers (Carkeet, 2001). Finally, there exist various scoring systems
such as logMAR, visual acuity rating (VAR), number of le�ers, Snellen or decimal visual acuity.
According to Ellio� (2016) logMAR should be used, which is based on the total number of
le�ers the patient is able to read. In this logarithmic scale normal vision is represented as 0,
while an increased value indicates reduced vision. In particular, each line that can be read
corresponds to a change of 0.1 in the logMAR score. VAR and number of le�ers have been
proposed to address the counterintuitive property of negative values in the logMAR score, but
conversion and interpretation has to be conducted carefully (Ellio�, 2016). �e conversion
table between di�erent scoring systems is provided in Table 2.1. As one can see, there are
many factors that can in�uence the test result of a visual acuity measurement. BCVA can
be unreliable, especially if multiple clinicians conduct measurements without considering a
speci�c standardization system (Ellio�, 2016). Hence, it is important to specify and report
all details of BCVA measurements (Williams et al., 2008). But even under perfect conditions,
patients condition and motivation as well as inter-observer variability can lead to deviating
results. It has been reported that BCVA can be ascertained at a con�dence level of 95% within
±8 le�ers (±0.15 log units) under normal clinical conditions (Siderov and Tiu, 1999) and within
±5 le�ers (±0.1 log units) under optimal conditions (Arditi and Cagenello, 1993).

LLVA Low luminance visual acuity (LLVA) is very similar to BCVA. �e se�ing as well as
the factors of variation are the same as describe above, except that patients read the ”normal”
illuminated chart with a neutral density �lter placed in front of their eye that lowers the
luminance by a certain factor (Frenkel et al., 2016, Sunness et al., 2008). Figure 2.4 illustrates
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Figure 2.5: Contrast sensitivity function curve according to spatial frequency. Spatial fre-
quencies are measured in cycles per degree (cpd) and influence the amount of contrast
needed to distinguish an individual object from its background.

the e�ect of such a �lter.

Contrast sensitivity Contrast sensitivity is de�ned as the ability of distinguishing an ob-
ject from its background, depending on the contrast between them (Richman et al., 2013).
Contrast is the di�erence between foreground and background in terms of luminance. A
gray object against a gray background has low contrast, while a black object in front of a
white background has high contrast. �e amount of contrast needed to distinguish an object
from its background also depends on the object size. �is can be expressed in terms of spatial
frequency, as illustrated in Figure 2.5. Low spatial frequency is shown as sparsely packed
lines, meaning a lower number of lines (circles) with a de�ned visual angle (degree). Contrast
sensitivity can be tested using le�er or grating charts. Commonly used tests involving charts
are Pelli-Robson (Trobe et al., 1996), Regan (Regan and Neima, 1983), Arden plates (Arden
and Jacobson, 1978), Cambridge gratings (Fahy et al., 1989) or Vector Vision (BÜhren et al.,
2006) charts. In contrast to visual acuity tests with logMAR charts, these tests evaluate vi-
sion at di�erent contrast and spatial frequency levels. A patient may have perfect BCVA
and still may su�er from poor vision due to bad contrast sensitivity, a�ecting the quality of
life (Owsley and Sloane, 1987, Richman et al., 2013). For instance, it has been shown that
contrast sensitivity is a�ected by AMD (Faria et al., 2015). While chart based testing faces
similar drawbacks as mentioned above for BCVA, there are other challenges for computer
based contrast sensitivity examinations. While it allows to show contrast targets in random
order or to use staircase strategies, the costs and expenses are higher and test results can be
a�ected by monitor properties such as size or luminance (Richman et al., 2013).
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Perimetry �e visual �eld is de�ned as the perception area of a single eye that is focused
on a stationary object, without moving the head or eye (Council et al., 2002). While visual
acuity tests measure the high-resolution vision in the center of the visual �eld, the systematic
examination of visual �eld function is called perimetry. It evaluates the ability of recognizing
stimuli in the macular, central and peripheral visual �eld. Perimetry tests can be categorized
into kinetic and static automated perimetry. In kinetic perimetry, the stimulus is moved while
size and brightness stay constant. In static automated perimetry, brightness and/or size of
the stimulus are varied while remaining at the same position (Council et al., 2002). Perimetry
can be particularly useful in the context of diseases that do not a�ect central but peripheral
vision. However, this conventional form of perimetry is not suited to test retinal sensitivity in
the macula in a stable and accurate way, especially in patients with unstable �xation (Acton
and Greenstein, 2013).

Microperimetry Microperimetry allows to overcome some limitations of automated perime-
try, enabling a detailed evaluation of macular function (Acton and Greenstein, 2013, Markowitz
and Reyes, 2013). It is the most comprehensive test of the macula regarding visual function,
examining retinal sensitivity at speci�c locations in a non-invasive way. Stimuli are pro-
jected directly onto the retina, following a pre-de�ned grid (Markowitz and Reyes, 2013).
�is examination is conducted with modern devices such as Macular Integrity Assessment
(MAIATM; CenterVue, Padova, Italy) or Nidek Microperimetry-3 (MP-3; Nidek Technologies
Srl, Padova, Italy) (Balasubramanian et al., 2018, Hirooka et al., 2016). �ese devices use
eye-tracking to ensure a certain amount of test-retest stability, meaning that a stimulus that
is repeatedly sent with the same intensity to the same position should always reach the same
correct location in the retina, leading to the same test outcome. Despite the opportunities
of microperimetry, it also faces some issues. �e examination takes several minutes and
can be exhausting under certain conditions, e.g. large grids or speci�c disease pa�erns. �e
quality and therefore the signi�cance of the test results do not only depend on the technical
speci�cations of the device (Balasubramanian et al., 2018, Hirooka et al., 2016), but also on
the motivation, learning e�ect or fatigue of the patient (Wong et al., 2017). Furthermore,
depending on the disease and its concrete manifestation in the patient, the reliability of the
test results can also vary (Molina-Martı́n et al., 2016, Wong et al., 2017, Wu et al., 2013, 2015).

2.1.3 Retinal Diseases

While there are various diseases of the eye that manifest themselves in the retina, we will
focus the introduction on age-related macular degeneration (AMD) and diabetic retinopathy
(DR), which are among the leading causes of blindness. �ough our experimental evaluations
are conducted on AMD patients, the developed methods can easily be adapted to work on
other diseases such as diabetic retinopathy. In addition, our methods are developed to work
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Figure 2.6: Progression paths of age-related macular degeneration (AMD) are depicted. Ex-
emplary optical coherence tomography (OCT) images are shown to illustrate typical visual
appearances of di�erent disease stages, from le� to right. Early AMD progresses to inter-
mediate AMD as drusen grow and pigment changes occur. In the final stage of the disease,
patients can develop both geographic atrophy (GA) or neovascular AMD. The red arrows
indicate an area of RPE loss in GA and intraretinal fluid in neovascular AMD, respectively.

on OCT images, which play a crucial role in the diagnosis and management of patients both
in AMD and DR.

Age-related Macular Degeneration AMD causes progressive damage to the macula, the
part of the retina which is responsible for central high-resolution vision. �erefore, a typical
symptom of AMD is loss of central vision. AMD is a common disease, as it is expected that
196 million people will be a�ected by age-related macular degeneration in 2020, increasing to
288 million worldwide in 2040 (Wong et al., 2014). Figure 2.6 shows the general progression
path of AMD. With increasing age, the structure of BM changes and debris from surrounding
tissues accumulate above and within the BM. According to Nowak (2006), the impairment of
RPE cell function is an early event as well, causing a progressive accumulation of lipofuscin
which is composed mostly of lipids and proteins. �e aggregation of lipids and other material
between the RPE and BM is called drusen and is more prevalent in the macula (Provis et al.,
2005). It is important to mention that according to the Beckman Initiative Classi�cation, the
appearance of small drupelets only (drusen below 63 µm in size) is considered as normal
age-related change, with no clinically relevant increased risk of developing late AMD (Ferris
et al., 2013). In contrast, if drusen exceed this size, they should be considered as sign of early
AMD (Figure 2.6). �is small deposits can cause activation of the immune system and local
in�ammatory response. It is suspected that the activation of the immune system actively
contributes to drusogenesis (Nowak, 2006). When drusen get larger and/or changes in the
RPE become visible, this is referred to as intermediate AMD (Awh et al., 2017). At this point,
two subgroups of �nal disease progressions can be clinically distinguished: neovascular AMD
and geographic atrophy (GA). While the former is also referred to wet AMD, dry AMD is
de�ned as the absence of neovascularization at any stage.
In neovascular AMD, one hypothesis is that local in�ammation causes an increased produc-
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Figure 2.7: Stages of diabetic retinopathy (DR) are shown: (a) no DR, (b) nonproliferative
DR and (c) proliferative DR. Modified from source: Orlando (2017).

tion of factors that promote vessel growth, such as vascular endothelial growth factor (VEGF).
�is means that the balance between pro-angiogenic factors (e.g. VEGF) that stimulate the
process of vessel growth and anti-angiogenic factors (e.g. pigment epithelium derived factor
(PEDF)) that inhibit angiogenesis, is disturbed (Bhu�o et al., 2006). �us, abnormal vessels
start to grow from the choroid towards and through the BM, called choroidal neovascular-
ization. �ese new vessels are abnormally leaky which causes �uid to enter the retina, with
varying degrees of destruction and distortion of retinal structures (Figure 2.6). Besides local
in�ammation, other factors such as hypoxia may play a role in the development of neovas-
cular AMD as well (Nowak, 2006).
In contrast, the second form of late AMD–geographic atrophy–is characterized by the death
of RPE, photoreceptors and/or choriocapillaris. �e loss of these structures can occur in ar-
bitrary order as well as in multiple locations at the same time (Boyer et al., 2017, Ferris et al.,
2013, Schatz and McDonald, 1989). Moreover, there exists a high interindividual variability,
e.g. the progression rates of a�ected areas vary widely among patients (Ferris et al., 2013,
Schatz and McDonald, 1989). �e concrete pathogenesis, the di�erentiation of sub-types
regarding risk as well as disease progression are not fully explored and actual topics of re-
search.
In general, the pathogenesis of AMD is complex and multifactorial, involving metabolic,
functional, genetic and environmental interactions which are not yet fully understood (Klein
et al., 2005, McHarg et al., 2015, Nowak, 2006).

Diabetic Retinopathy As AMD, also diabetic retinopathy (DR) can cause severe vision
loss or blindness. It is a common disease with approximately 93 million people a�ected
worldwide (Yau et al., 2012). Symptoms include blurred vision, faded colors, spots or meta-
morphopsia (straight lines might appear curved). It can emerge in patients su�ering from
diabetes, where improper metabolization of glucose causes hyperglycemia, de�ned as an in-
creased level of sugar in the blood. Hyperglycemia can cause pathological changes of retinal
vessels. �e earliest stage of the disease is called nonproliferative DR and is characterized by
the occurrence of microaneurysms, hemorrhages and hard exudates (Abràmo� et al., 2010).
Microaneurysms appear when the increased sugar level weakens the vasculature, its rupture
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Figure 2.8: Treatment options for wet AMD. (a) In the photodynamic therapy (PDT) a
photosensitive substance is administered to the patient, before a low-intensity laser activates
it in the abnormal retinal vessels. (b) A high intensity laser surgery is done to locally heat,
seal and destroy abnormal vessels. (c) In the anti-VEGF treatment angiogenesis inhibitors
are injected into the eye. The current standard therapy for AMD is (c), while (a) and (b) are
only used under special circumstances. Figure elements were used from Commons (2018b).

producing leakages of blood, known as hemorrhages (Mookiah et al., 2013). On the other
hand, hard exudates are accumulations of proteins and lipids which leave the vessels due
to the increased permeability of its walls. However, nonproliferative DR is characterized by
the absence of neovascularization. �e damage of retinal vessels can cause increased produc-
tion of pro-angiogenic factors (e.g. VEGF), leading to growth of additional abnormal vessels
which show increased permeability. �is stage where neovascularization occurs is called
proliferative DR. In this context, the abnormal appearance of �uid in the retina is referred to
as diabetic macular edema (DME) and can occur independent of the DR stage.

2.1.4 Treatment Options and Challenges

Currently, there are three therapies for neovascular AMD available: photodynamic therapy
(PDT), laser surgery and injection of angiogenesis inhibitors into the eye (Wyko� et al., 2018).
While the former two are only used in speci�c circumstances, the la�er is the currently used
standard therapy. In the photodynamic therapy a photosensitive substance (vertepor�n) is
administered intravenously. When this substance has reached the leaking blood vessels in the
retina, it is activated by directing a low-intensity laser to the retina (Figure 2.8(a)). �is leads
to a destruction of the abnormal blood vessels (Al-Zamil and Yassin, 2017, of Age-Related
Macular Degeneration with Photodynamic �erapy , TAP). Since the drug is activated by light,
it is important not to expose the eye or the skin to sunlight for a few days a�er the treatment.
Moreover, the use of PDT in wet AMD has declined due to inadequate and unpredictable
e�ects that have caused large number of recurrences and retreatments needed (Al-Zamil and
Yassin, 2017, Michels et al., 2006).

Conducting a laser photocoagulation surgery is another option of treating wet AMD
(Wyko� et al., 2018) (Figure 2.8(b)). A high-energy laser is applied with a speci�c amount of
energy to selected locations of the retina to heat, seal and destroy abnormal vessels (Joussen
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and Bornfeld, 2009). An essential drawback is the blind spots produced by scarring at the
area of utilization, leading to a permanent vision loss. As a consequence this therapy is only
considered if the area needed to treat is not located in the macula. Moreover, it has a high
recurrence rate of almost 50%, meaning that multiple laser surgeries are necessary if new
vessels grow (Hubschman et al., 2009, Joussen and Bornfeld, 2009).

�e third treatment option is the current state-of-the-art therapy: injections of angiogen-
esis inhibitors into the eye, also known as anti-VEGF treatment. As discussed above in
Section 2.1.3, it is known that an increased amount of vessel growth factors (VEGF) leads to
angiogenesis of abnormal vessels. A consequence is the leaking of blood and/or �uid into
the retina which causes destruction of retinal structures. To prevent the formation of new
blood vessels and to reduce vascular leakage the inhibitory substance is directly injected into
the vitreous, blocking the activity of VEGF (Figure 2.8(c)) (Wyko� et al., 2018). It allows to
slow down the disease progression and can lead to a partial recovery of vision. However,
since a single injection costs more than 1000€ and regular treatments are needed at the same
time, the consequence is a high burden both for the patient and the healthcare system (Stein
et al., 2014). Treatment strategies such as pro re nata (PRN) or treat-and-extend try to reduce
the number of visits needed. A�er an induction phase of three months with injections at a 4
week interval, PRN treatments are conducted in case of recurring �uid or vision loss (Wyko�
et al., 2018). �is incorporates the disadvantage of treating a patient a�er damage has already
occurred. Treat-and-extend also involves an induction phase, a�er which the treatment in-
tervals are prolonged at each visit without event (no vision loss and no recurrence of �uid).
�is forms an incremental approach with increasing time intervals between treatments until
signs of CNV reoccur (Wyko� et al., 2018). �e limitations of this strategy are two-fold: In
the beginning, some patients might receive more injections than actually needed, while at a
later stage prolongation of treatment intervals will lead to disease progression and damage
of the retina. Due to individual disease progression paths and di�ering treatment responses,
a single treatment strategy is suboptimal (Al-Zamil and Yassin, 2017). In this context, new
biomarkers can help to identify patient sub-groups with di�erent risks and treatment require-
ments at the earliest possible time point. �is enables an optimization of treatment for each
individual patient, representing a cornerstone of precision medicine.

On the other hand, the investigation of imaging biomarkers is also an important compo-
nent in the exploration of pathogenesis and disease characteristics, guiding future research
and clinical practice (Lambert et al., 2016). Particularly, for the second type of late AMD
(GA) there is currently no therapy available which has proven to be e�ective (Al-Zamil and
Yassin, 2017, Holz et al., 2018). Even though it has been shown in the age related eye disease
studies (AREDS 1 and 2) that a speci�c combination of vitamins and minerals for early AMD
patients can reduce the risk of disease progression to late AMD by 25% (Group et al., 2000,
2001a), Awh et al. (2015, 2017) discovered that this medication is only e�ective in certain
genotypes, representing an example that emphasizes the need for precision medicine and
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therefore for biomarker discovery. Moreover, the exploration of biomarkers is needed due to
the still existing lack of knowledge regarding the pathogenesis of AMD (Al-Zamil and Yassin,
2017).

For treatment of proliferative DR, panretinal photocoagulation (Chappelow et al., 2012)
as well as anti-VEGF treatments are applicable, aiming at stopping proliferation. For dia-
betic macular edema (DME) anti-VEGF injections, intravitreal corticosteroids or focal/grid
photocoagulation can be applied with the goal of stopping leakage and restoring visual acu-
ity (Chappelow et al., 2012, Wenick and Bressler, 2012). Here, anti-VEGF therapies are widely
applied, since they have shown e�cacy in comparison with laser surgery (Ford et al., 2013).
In general, anti-VEGF drugs can be administered in all retinal diseases that lead to macular
edema (Channa et al., 2011, Ding and Wong, 2012, Schmidt-Erfurth et al., 2014).

2.2 Optical Coherence Tomography (OCT)

Optical coherence tomography (OCT) is a non-invasive imaging technique in medicine that
can produce two- and three-dimensional images. Two exemplary cross-sectional slices of
the retina are shown in Figure 2.10. It enables imaging of structures and pathologies at
high-resolution level, down to 1-15µm (Drexler and Fujimoto, 2008). OCT has become an
important diagnostic modality in ophthalmology, allowing in-vivo diagnosis and assessment
of retinal diseases and its progression (Schmidt-Erfurth et al., 2005). For instance, OCT is
used to guide di�erent treatment strategies of AMD presented in Section 2.1.4 (Wyko� et al.,
2018).

In general, OCT images can be acquired in a non-invasive way, by measuring the re�ec-
tivity of tissue types based on low-coherence interferometry (Drexler and Fujimoto, 2008).
In contrast to ultrasound (sound waves), MRT (radio frequency) and CT (ionizing radiation),
OCT is based on coherent light waves, enabling an acquisition of high-resolution images at
µm level. Moreover, it can be safely applied to the retina without causing any damage to the
eye. At the same time, the main drawback is the low penetration depth of OCT, restricted to
approximately 2mm due to a�enuation of light in tissue (Drexler and Fujimoto, 2008).

As illustrated in Figure 2.9, a broadband light beam is emi�ed from a source. A beam-
spli�er is used to split the emi�ed light into two parts: the reference and a measurement
beam. While the reference beam is re�ected by a mirror at a speci�c distance, the measure-
ment beam is re�ected by the tissue of the retina. �e re�ected light of both beams is �nally
combined at the detector. Since the position of the source, beamspli�er and reference mir-
ror are speci�ed, the reference beam travels a known distance at a known time-span until
reaching the detector. At the same time, the measurement beam is re�ected at multiple depth-
levels of the tissue, meaning that re�ections at di�erent depths have di�erent travel path
lengths back to the detector. However, an interference pa�ern is only created if the travel
paths of the re�ected reference beam and the re�ected measurement beam di�er less than
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Figure 2.9: Concept of OCT imaging. Schematic illustration of the (a) time-domain and (b)
spectral-domain OCT acquisition principles.

a coherence length. Re�ections outside of the coherence length do not cause a interference
response. �e more light is re�ected within this coherence length (i.e. at a speci�c depth
of the tissue) the higher is the corresponding interference signal measured at the detector.
In other words, the distance of the reference mirror controls the depth at which re�ectivity
measurements of the tissue are conducted. By translating the reference mirror, interference
signals can be measured at di�erent tissue depths. In this way, a one-dimensional re�ectivity
pro�le is captured, namely A-scan or depth scan. Multiple A-scans can be combined to form
a two-dimensional slice along the lateral axis, called B-scan. A three-dimensional volume
(3D-OCT) can be obtained by performing a raster scan, concatenating several B-scans. �is
type of image acquisition technique is called time-domain OCT, since re�ections at di�er-
ent depths generate interference signals at di�erent times. However, the scanning speed of
time-domain OCT is limited by the speed the reference mirror can be moved (Gabriele et al.,
2010) 1. Besides practical implications for the clinical use case, severe motion artifacts occur

1�e �rst commercially available time-domain OCT device had a scanning speed of 400 Hz (400 A-scans/sec),
while SD-OCTs reach speeds up to 312.5 kHz (Gabriele et al., 2010, Potsaid et al., 2008)
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as a consequence of the long acquisition time.

Several limitations of time-domain OCT are overcome by the novel generation of spectral
domain OCT (SD-OCT) (Götzinger et al., 2005). According to Drexler and Fujimoto (2008),
scanning is 50 to 100 times faster compared to earlier OCT systems. �is allows to reduce the
e�ects of motion and to increase the number of acquired A-Scans per slice and/or the number
of B-scans per 3D-OCT. Instead of moving the reference mirror to measure intensities at
di�erent depths (intensity modulations are measured as a function of time), the position of
the reference mirror is �xed and a single A-Scan is acquired in one pass. �is is done by using
a spectrometer in place of the detector, acquiring the broadband interference (intensities are
measured as a function of light frequencies). Applying a Fourier transformation on this
spectrometer output yields the re�ectivity as a function of depth for a full A-scan (Popescu
et al., 2011). A schematic illustration is provided in Figure 2.9

OCT is an essential tool in ophthalmology for diagnosis and management of patients
with retinal diseases (Schmidt-Erfurth et al., 2005). Its high-resolution property allows to
identify subtle changes in the retina and to detect pathological structures. In clinical practice,
OCT devices of di�erent vendors are used, where they di�er with respect to imaging and
post-processing techniques which leads to varying visual appearance. Figure 2.10 illustrates
example B-scans of two di�erent vendors whose OCTs are used in this thesis: Cirrus (Carl
Zeiss Meditec, Dublin, CA) and Spectralis (Heidelberg Engineering, Heidelberg, Germany).
Besides di�ering voxel resolutions, the la�er involves a process called B-scan averaging
during image acquisition. While this leads to an improved signal-to-noise ratio within B-
scans, the drawback is an increased scanning time of a single B-scan.

Besides OCT, there exist other retinal imaging modalities such as fundus photography (Pan-
war et al., 2016) or �uorescein angiography (FA) (Abràmo� et al., 2010). However, in this
thesis we develop methods for image biomarker discovery in retinal OCT scans, which is
why we limit our description to OCT.

2.3 Clinical Trial Endpoints

Clinical trials are designed to provide substantial evidence for the e�ectiveness and safety
of a speci�c therapy. �e choice of endpoints in clinical trials is important, since they are
used to prove this e�cacy (Medeiros, 2015). Hence, the endpoints which are used to asses
the e�ectiveness must be clinically meaningful, so the evaluation and the shown e�ect is
meaningful as well. �ey should enable to show e�cacy for patients on average, and at the
same time allow to asses the bene�t for individual patients (Lassere et al., 2007, Medeiros,
2015).
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(a) (b)

Figure 2.10: Illustration of exemplary spectral domain OCT (SD-OCT) B-scans from two dif-
ferent vendors: (a) Spectralis (Heidelberg Engineering, Heidelberg, Germany) and (b) Cirrus
(Carl Zeiss Meditec, Dublin, CA), with image resolutions of 496×512 and 1024×512, respec-
tively. Both cross-sections show a retina of patients with late neovascular AMD. The di�er-
ences in image appearance are due to varying image acquisition techniques, e.g. the B-scan
averaging technique used in Spectralis devices usually leads to an improved signal-to-noise
ratio within slices.

2.3.1 Primary and Surrogate Endpoints

In general, two types of endpoints can be distinguished: primary and surrogate endpoints.
Primary endpoints are patient-centered variables and provide a direct measure on how a
patient feels, function or survives. �ey should represent the clinical outcome of interest
themselves and thus being clinically meaningful (Cole et al., 2016). Surrogate endpoints act as
a substitute for a clinically meaningful primary endpoint. Anatomical endpoints, laboratory
measures or physical signs are examples for surrogates (Cole et al., 2016). An underlying
assumption when using them is that surrogate and primary endpoints are related: changes
in surrogates are expected to re�ect changes in primary endpoints (Prentice, 1989). Before
a biomarker can be used as surrogate endpoint in a clinical trial, this expectation needs to
be validated. In general, surrogates can be seen as biomarkers that achieved a ”surrogate
status” in a particular context. In principle, biomarkers are disease-centered and re�ect the
biology and the mechanisms of the disease. By performing validation with respect to a
speci�c primary endpoint, the status of a biomarker moves from a disease-centered towards
a more patient-centered variable. �is validation is not a single event, but an incremental
process (Lassere et al., 2007). A surrogate that is valid for one primary endpoint, may not
be a valid surrogate in another context (Gobburu, 2009). Ideally, the surrogate should be an
explicit part of the therapeutic pathway, meaning that the treatment results in the bene�t by
virtue of its e�ect on the surrogate (Cole et al., 2016). As described above, primary endpoints
have a direct relation to the patient and are de�ned as the standard to asses therapeuthic
interventions. However, reasons for using surrogate endpoints are diverse: they may be
faster and easier to obtain, are cheaper or have be�er reproducibility. Moreover, surrogates
can be used as supportive endpoints to be�er assess the characteristics of therapeutic e�ects.
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Figure 2.11: Example Spectralis OCT B-scans of patients with neovascular AMD are shown,
the arrows illustrating di�erent lesion types (cyan: hyperreflective foci (HRF), purple: subreti-
nal fluid (SRF), green: intraretinal fluid (IRF), yellow : pigment epithelial detachments (PED),
red : subretinal hyperreflective material (SHRM))

2.3.2 Endpoints in Retinal Studies

In retinal studies, variants of visual acuity outcome are the most commonly used primary
endpoint. Examples for clinical trials that used visual acuity as endpoint are BRIGHTER(Tadayoni
et al., 2016), CRYSTAL (Larsen et al., 2016), AREDS (Group et al., 1999), AREDS2 (Chew et al.,
2014) or HARBOR (Ho et al., 2014). �ey involve variants of visual acuity outcome such as
di�erence in BCVA between the �rst visit and a later time point in the study, or the amount
of patients with decreasing VA or increasing VA.

Typical anatomical endpoints are central retinal thickness (CRT), presence or absence of
macular �uid or the area of total leakage (Ho et al., 2014, Larsen et al., 2016, Tadayoni et al.,
2016). CRT is assessed by using OCT imaging, calculating the concrete measurements in a
semi-automatic way. �e grading of macular �uid is also conducted in OCT, where two types
of �uid were evaluated in the above mentioned studies: intraretinal �uid (IRF) and subretinal
�uid (SRF). �ese types are distinguished based on the relative spatial location within the
retina, as illustrated in Figure 2.11. While SRF is located underneath the neurosensory retina
(de�ned as ranging from the ganglion cell layer (GC) to the outer segment (OS) layer), IRF
is located within neurosensory retina. In OCT scans, SRF appears as non-re�ective (dark)
spaces just above the RPE. In contrast, IRF is characterized by round shapes that are dark
due to minimal re�ectivity. �e area of total leakage is manually assessed using �uorescein
angiography (FA) images (Abràmo� et al., 2010).

Other imaging biomarkers of OCT also represent potential new surrogate endpoints for
clinical trials. Besides IRF and SRF, some pathological structures that have been described are
hyperre�ective foci (HRF), PED and SHRM, shown in Figure 2.11. In addition, some of the
above mentioned markers have shown limited predictive capability, meaning that there might
be other hitherto unnoticed structures or pa�erns that are still needed to be discovered (Vogl
et al., 2017a).
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CHAPTER3
Machine Learning

“Develop a passion for learning.

If you do, you will never cease to grow.”

– Anthony J. D’Angelo

In this Chapter we introduce basic machine learning concepts, algorithmic aspects, deep
learning fundamentals as well as essential statistical evaluation metrics to assess deep

learning methods in the context of biomarker discovery. In Section 3.1 machine learning
fundamentals as well as varying paradigms for training are described. Section 3.2 covers a
more speci�c �eld of machine learning which has recently shown impressive results, namely
deep learning. Finally, we describe evaluation metrics in Section 3.3 and provide a summary
in Section 3.4.

3.1 Machine Learning Fundamentals

Machine learning is a sub-�eld of arti�cial intelligence (AI). In general, AI subsumes all
techniques that aim at mimicking human intelligence in an automated way using comput-
ers (Pomerol, 1997). �is also involves approaches where speci�c decision processes are
explicitly programmed, e.g. with if-then rules. In contrast, machine learning techniques
autonomously learn pa�erns, regularities and characteristics from example data to solve
a given task without hand-cra�ing decision rules explicitly (Hastie et al., 2009). Machine
learning is linked with multiple disciplines such as statistics, optimization and computational
theory. �e general idea of machine learning is that given a speci�c problem statement, a
corresponding dataset and a model with parameters, the dataset is used to optimize the model
parameters to solve the problem (Figure 3.1). �is results in an optimized model that can be
applied in an automated way to new data.
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Model
- Random Forest
- Neural Network
- SVM
- ...

Data
- labeled
- unlabeled
- ...

Objective function
- Mean Squared Error
- Cross-Entropy
- ...

Optimization algorithm
- Gradient Descent
- ...

Learning Task:
regression, classification, segmentation, clustering, ...

Training Paradigm
(supervised, unsupervised, ...)

Figure 3.1: Overview of machine learning and its main components. To solve a given task
(learning target), an optimization algorithm is applied to optimize the model, using the
data and a specific optimization function. The combination of optimization algorithm, data
characteristics, optimization function andmodel choice characterizes the training paradigm.

3.1.1 Training components in machine learning

�e process in which the machine learning model is optimized to solve a speci�c task (learning
target) is called training. �e training procedure is also referred to as learning and involves (1)
training data, (2) a model, (3) an objective function and (4) a speci�c optimization algorithm.
Dependent on the type of model, the characteristics of data, the choice of objective function,
the optimization algorithm used and how these components are combined with each other,
di�erent types of training paradigms are distinguished from each other (Section 3.1.3). An
overview of this se�ing is given in Figure 3.1.

(1) Data A su�ciently large amount of data is critical for successful training of a model.
�e amount of needed samples depends on the complexity of the task, the variability of the
data, the data quality and the speci�c model which is trained. �e more complex the task,
the more variability is present or the lower the quality of the data, the more training data
is required. Data is typically split into training, validation and test sets (James et al., 2013).
�e training of the model is conducted on the training set. �e validation- and test sets are
not shown to the model during training, since they are used to assess the generalizability
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of the trained model. In particular, the validation set is used for hyper-parameter tuning
and model selection, while the �nal model evaluation is performed on the hold-out test set.
Cross-validation is a technique that is especially useful if the amount of data is limited. �e
data is split into k folds, where one split is used for validation and the remaining ones for
training. �is is repeated k times, such that each fold is used exactly once for validation (James
et al., 2013). In general it is important that the data distribution of the test set matches the
distribution of the application domain, so the evaluation on the test set yields a correct
estimate of the model performance in the ”real world”.

(2) Model Among others, the given learning task and the available data in�uence the choice
of the speci�c machine learning model. Examples for di�erent types of models are random
forests (RFs) (Breiman, 2001), support vector machine (SVM) (Suykens and Vandewalle, 1999)
or neural networks (NNs) (Bishop et al., 1995, LeCun et al., 2015). Each model has speci�c
hyper-parameters (e.g. number of neurons in the NN, number of trees in RFs) which are
optimized during training. �is corresponds to �nding the optimal model complexity. A
model that is too complex is likely to over�t, having perfect performance on the training
set but bad generalization performance on the validation and test set. In contrast, a model
complexity that is too low for a given task will face the problem of under��ing, showing bad
performance on all data sets. Since the �nal goal is a good generalizability of the model, both
cases should be avoided.

(3) Objective function �e training of the model is conducted with input samples x and
corresponding learning targets y. In general, the model F with parameters θ maps an input
x to the output ŷ:

Fθ (x) = ŷ. (3.1)

Assuming that for each inputx the output targetsy are known, the objective function provides
a measurement how good the model output is with respect to the known targets. �e objective
function J(θ ) is parameterized by the model parameters θ , since the output of the model
depends on θ . A well established objective function is the mean squared error (MSE) loss:

MSE(ŷ,y) =
1
n

n∑
i=1
(ŷ − y)2 (3.2)

where n is the dimension of the output. In classi�cation problems (Section 3.1.3) a commonly
used objective function is the cross entropy (CE) loss:

CE(ŷ,y) = −
C∑
c=1

yc log ŷc (3.3)
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where C is the number of classes, and the target y is provided in an one-hot encoding. �is
means that y is a vector of length equal to the number of classes, with all elements set to zero
except the element that represents the true class which is set to one.

(4) Optimization algorithm �e optimization algorithm determines how the model pa-
rametersθ are adapted based on the outcome of the objective function J(θ ) on the training data.
�e most widely used optimization algorithm for neural networks is gradient descent (Ruder,
2016). �is technique computes the gradient of the objective function with respect to the
model parameters θ , performing a small update of the parameters in order to optimize J(θ ).
A more detailed explanation of NN optimization is provided in Section 3.2.1.

3.1.2 Learning Tasks

�ere are various categories of learning tasks including classi�cation, segmentation, regres-
sion, representation learning or anomaly detection. In the following we provide an non-
exhaustive overview of common learning tasks.

Classi�cation In classi�cation, each sample x can be categorized into one out ofC classes.
In the supervised learning se�ing (Section 3.1.3), a corresponding target class label y exists
for each input sample x . Binary classi�cation describes the special case in which only
two classes have to be discriminated from each other in the dataset. �e se�ing in which
the instances are categorized into three or more classes is called multi-class classi�cation.
Both in the binary and the multi-class se�ing, a single class label is assigned to each instance.
In contrast, if multiple labels can be predicted for each sample this is referred to as multi-
label classi�cation. Random forests are one example for machine learning classi�cation
methods. In Chapter 5, RFs are trained to discriminate patients with di�erent retinal disease
stages, based on OCTs.

Semantic segmentation Semantic segmentation describes the task of performing pixel-
level detection of objects in an image. While in classi�cation a whole image gets assigned to
a single category, in semantic segmentation each pixel gets assigned to a speci�c class. In
other words, the output y is not a single class label, but a label map that is of the same size as
the input x . �e �rst group of approaches performs segmentation of the input image in an
iterative way, based on classi�cation of patches. Centered at pixel p, a patch Ûx is extracted
from image x . �e machine learning model receives the patch as input and predicts an
output class label Ûy, which is assigned to pixel p. By iteratively doing this for each pixel in
the image, the �nal segmentation map is obtained. �e second group of approaches predicts
the segmentation map at once, using the whole image as input. A method following this
strategy is presented in Chapter 6.
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Regression While discrete values are used in classi�cation, regression describes the task
of learning the relationship between input data and continuous target variables (James et al.,
2013). �is concept encompasses both the prediction of continuous target values lying within
the range of training samples (interpolation) and beyond this range (extrapolation). In Chap-
ter 7, regression is used to evaluate the predictive power of biomarker candidates.

Clustering Clustering describes the process of performing unsupervised (Section 3.1.3)
partitioning of data into groups (Jain et al., 1999). Samples within groups are similar, while
these similarities are not present across groups. �e de�nition and type of similarity depends
on the context and the underlying input data. A widely used clustering technique is K-means
clustering (Forgy, 1965, Lloyd, 1982). A variant of this algorithm called spherical K-means
clustering (Hornik et al., 2012) is used in Chapter 5 to identify categories in anomalous areas
of OCT scans.

Representation learning �is is also known as feature learning, targeting to learn a be�er,
more informative representation of the input data, ideally capturing the underlying explana-
tory factors of the data (Bengio et al., 2013). In contrast to other tasks such as classi�cation or
regression, one of the main challenges in representation learning is the di�culty of establish-
ing a clear objective or target to train the machine learning model. However, there are various
characteristics of feature representations that are considered to be advantageous, e.g. spar-
sity, natural clustering or smoothness (Bengio et al., 2013). �ese assumptions form the basis
for many algorithms. For instance, autoencoders (AEs) (Section 3.2.3) belong to the group of
methods that learn to map the input data to a lower dimensional embedding space, which can
be interpreted as data compression procedure. Methods that involve representation learning
methods are presented in Chapter 5 and Chapter 7.

Anomaly detection Anomaly detection is sometimes also referred to as novelty detection
and is de�ned as the task of identifying test samples that di�er in some respect from the
data available during training (Pimentel et al., 2014). �e normal appearance is learned from
the training data, enabling a detection of anomalies that di�er from this normal appearance
during test time. Hence, the targets of interest (anomalies) are implicitly encoded in the
normal training set. Outlier detection is a related approach that aims at identifying outliers
in the training data (e.g. by ��ing models to the region where the training data is most
concentrated), and therefore tackles a slightly di�erent task (Chandola et al., 2009). Methods
for anomaly detection have been proposed in various domains, such as IT security (Peng
et al., 2007), video surveillance (Li et al., 2012, Pokrajac et al., 2007), text mining (Ando, 2007),
jet engine monitoring (Hayton et al., 2001) or medicine (Cli�on et al., 2011, Schlegl et al.,
2017, Sidibé et al., 2017). A widely used technique is the One-Class SVM, aiming at �nding
a boundary that describes the distribution of normal data and then be used to classify new
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Figure 3.2: Di�erences between training paradigms are illustrated. In supervised learning,
each input sample x has a corresponding target label y. Lower-quality labels are used in
weakly supervised learning, meaning that some labels may be incorrect (but we do not know
which). In unsupervised learning, models are trained purely data-driven, without labels.
Training both on unlabeled and labeled data is called semi-supervised learning.

data as normal or anomalous (Cli�on et al., 2011, Hayton et al., 2001, Schölkopf et al., 2001,
Tax and Duin, 1999). Another approach for anomaly detection are Gaussian mixture models
(GMMs), as used in (Sidibé et al., 2017). �e idea is to model the probability density of the
normal training data with multiple kernels (Chow, 1970). A drawback of these techniques is
the requirement to chose a speci�c density function, which may not be optimal for the given
data (Pimentel et al., 2014). In general, anomaly detection is especially useful in se�ings
where there is insu�cient amount of data available to describe the anomalies (Markou and
Singh, 2003). Anomaly detection methods are presented in Chapter 5 and Chapter 6.

3.1.3 Training Paradigms

�ere are di�erent ways how to solve a given learning task with machine learning. In general,
the aim of machine learning is to utilize the given training data to automatically �nd optimal
model parameters for a speci�c task. Based on the information (i.e. data) available during
training, we di�erentiate the following training paradigms which are relevant for our thesis:
supervised learning, weakly supervised learning, unsupervised learning and semi-supervised
learning.

All these training paradigms involve the presence of input data x , which represents
the independent variable or observed variable. �ey di�er with respect to the entropy or
availability of the target variable y (or label) during training, which is also referred to as
dependent variable or unobserved variable. An overview of the described training paradigms
is provided in Figure 3.2.

Supervised learning In the supervised se�ing, labeled data is used to train the machine
learning model. For each instance x in the dataset, a corresponding ground-truth target labely
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is available. �ese labels are generated manually by experts and are provided at the same level
of detail as is required by the particular prediction task. For instance, pixel-wise or image-
level labels are provided for the semantic segmentation or classi�cation task, respectively.
�e main drawback of this training paradigm is the fact that manual labels are costly to
obtain. Particularly in the �eld of medical image analysis the acquisition of high-quality
labels is challenging, since the annotation process is time consuming and expert knowledge
is required.

Weakly supervised learning To overcome the issue that manual annotations are costly
to obtain or sometimes not available, weakly supervised learning aims at using higher-level
and/or noisier labels as supervisory signal. �e idea is to relax the requirement regarding
the quality of labels in order to make the labeling process cheaper and a�ordable. �ere
are various strategies to generate weak labels, such as leveraging higher-level supervision
from experts, ge�ing cheaper low-quality labels from non-experts or using already available
pre-trained models to produce noisy labels. Higher-level supervision describes the idea of
generating labels at a higher level than actually required for the concrete task. In this se�ing
also known as multi-instance learning, a set of instances is grouped into a bag, and experts
are annotating the bags, not the individual instances (Die�erich et al., 1997, Zhou and Zhang,
2007). Assuming a semantic segmentation problem, experts create image-level (bag) instead
of pixel-wise (instance) labels (e.g. information if a tumor is present in the image or not,
but no pixel-wise annotations). �e image-level (bag) label is then assigned to all pixels
(instances), leading to false positive instance labels (but no false negatives).

All weak labeling strategies have in common that they allow to generate labels in a cheap
way, at the expense of having incorrect labels for some instances as illustrated in Figure 3.2.
A weakly supervised technique is presented in Chapter 6.

Unsupervised learning Unsupervised learning denotes the se�ing in which no target
labels are available. Unsupervised machine learning models are trained without target labels,
aiming at capturing the underlying structure of the data (Bengio et al., 2009). Unsupervised
learning is closely related to the task of representation learning, transforming the raw input
data into a more abstract representation called embedding space. Ideally, semantically similar
samples have a small distance to each other, while dissimilarity is re�ected by large distances
in the embedding space. An example for an unsupervised learning algorithm is principal com-
ponent analysis (PCA), which performs a linear transformation of the input data into a new
representation, ranking individual features by their explanatory power (i.e. variance) (López
et al., 2011). By retaining only the top-ranked features that contain the highest variance, a
low-dimensional embedding space of the input data is established. Since it is a simple but
powerful technique, it has been applied for a variety of tasks ranging from medical image
compression (Taur and Tao, 1996) to feature extraction (Bogunović et al., 2017). Another tech-
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nique for unsupervised learning are autoencoders (Bengio et al., 2007), which allow a more
complex non-linear embedding and are described in Section 3.2.3. In general, unsupervised
approaches can be trained on very large amounts of data, omi�ing the need for labeling the
dataset. Low-dimensional embeddings which have been obtained by unsupervised learning,
can be subsequently used as features for clustering or supervised training (semi-supervised
learning) (Coates, 2012). Unsupervised methods are presented in Chapter 5 and Chapter 7.

Semi-supervised learning Although unsupervised algorithms can be trained without la-
bels on large-scale data, the resulting feature representation may not be optimal for a speci�c
task. In semi-supervised learning, both large amounts of unlabeled data and additional few
labeled data samples are used to train the machine learning model (Chapelle et al., 2006). A
commonly used strategy involves sequential training on both datasets. First, unsupervised
learning is performed on the unlabeled data to learn a mapping to a representative embed-
ding space. Subsequently, the trained model is utilized to map the small labeled dataset to
the learned embedding. �is feature representation is then used together with the labels
to perform supervised training of a second model (Schmidhuber, 2015). Alternatively the
parameters of the �rst model are optimized in conjunction with the parameters of the second
model, during the second stage (Schlegl et al., 2014).

3.2 Deep Learning

Since the development of deep learning approaches is the focus of this thesis, a condensed
overview about deep learning is given in this section. In particular, main building blocks and
principles, as well as supervised, unsupervised and Bayesian deep learning approaches are
discussed concisely.

Conventional machine learning techniques are not able to learn features directly from
data in an end-to-end architecture. Instead, domain expert knowledge is required to perform
careful engineering of feature extractors (hand-cra�ed features). �ese transform the raw
data into a representation from which a learning algorithm can be trained to detect or classify
pa�erns (LeCun et al., 2015, Litjens et al., 2017). An alternative to careful feature engineer-
ing is to generate a high-number of feature candidates and perform feature selection in a
subsequent step, e.g. with bagging or boosting (Bryll et al., 2003, Langley, 1994, Opitz, 1999)

In contrast, deep learning algorithms automatically learn feature representations opti-
mized for a speci�c task from data. �e term deep refers to the fact that the models are
arti�cial neural networks (ANNs) composed of many layers, each layer transforming the
input to a slightly more abstract representation. By stacking many layers on top of each
other complex functions can be learned, mapping the raw input (e.g. pixel intensity values)
to the �nal output (e.g. class probabilities) (Bengio et al., 2009). For instance, when trained
with images, the �rst layer of a neural network (input layer) may learn to detect edges, while
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Figure 3.3: Deep learning building blocks. (a) A fully connected layer with an input vector
with 5 neurons (blue), the bias term (red) and 3 output neurons (orange). (b) Illustration
of a two-dimensional convolutional layer. First, zero padding (black arrow) is applied to a
4x4 input with 1 channel (yellow). The padded input is then convolved with a set of 4 filters
W = {W1,W2,W3,W4} (3×3 filter size, stride of 1), resulting in 4 output channels. (c)
Max-pooling with non-overlapping 2×2 blocks. (d) In dropout activations are randomly set
to zero with a certain dropout probability during training. Here we show the application of
dropout to a fully connected layer.

intermediate layers (hidden layers) will learn to detect local shapes, object parts and �nally
entire objects before reaching the �nal layer (output layer). Deep neural networks (DNNs)
are inspired by the architectural depth of the brain, speci�cally by the visual system (Bengio
et al., 2009, Serre et al., 2007). Hence, the most basic processing units in DNNs are called
neurons, sometimes also referred to as network nodes or units.

3.2.1 Basic elements of deep learning architectures

In general, deep neural networks are composed of various building blocks that form the �nal
architecture of the network. �e most fundamental layers are fully connected and convo-
lutional layers. Activation functions are applied to the output of other layers, allowing the
network to learn complex non-linear functions. Normalization and regularization methods
are used to improve and stabilize the training of networks. Finally, di�erent optimization
techniques can be applied to learn the network parameters.

Fully connected layer Fully connected layers can be used in conjunction with non-linear
activation functions to learn a non-linear transformation from inputs to outputs, without
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applying assumptions about the structure of the input features. In a fully connected layer,
each neuron is connected to all neurons of the previous layer. �e neurons from the previous
layer form an input vector x , which is multiplied with a weight matrix W, followed by an
addition of a bias term b:

z =Wx + b, (3.4)

z denoting the output vector of the actual layer, also known as activations (Litjens et al.,
2017). �is constitutes an a�ne transformation, whereW and b are the parameters which
are adapted during training. �e number of neurons in a layer is a hyper-parameter that has
to be de�ned and determines the output size of the layer. Figure 3.3(a) illustrates a fully
connected layer with 5 input and 3 output neurons.

Convolutional layer In convolutional layers, each neuron is only connected to a few
nearby neurons of the previous layer, exploiting the spatial structure of the input. While
fully connected layers can deal with arbitrary dimensions by transforming the input into a
one-dimensional representation (vectorization), they have an important drawback. By using
vectorized input data, fully connected layers ignore the intrinsic structure of data, such as
topological or temporal information. Hence, they represent over-parameterized models when
being directly applied to images. In contrast, convolutional layers are parameterized by a
set of �lters W = {W1, ...,Wk} which are convolved (∗) with the input X to obtain the
activations Z :

Z =W ∗ X + b . (3.5)

In other words, each convolution �lterWj inW is slid step-wise over the inputX , calculating
the activations by computing the dot-product between the �lter coe�cients and the input
values it overlaps with. Since the same convolution �lter is applied at multiple locations
(weight-sharing), the parameters of the convolutional layer are reused, reducing the number of
parameters compared to a fully connected layer (Litjens et al., 2017). Moreover, the utilization
of convolutional �lters is motivated by the assumption that �lters which are useful in one part
of the image should be useful in other locations as well (e.g. edge detectors). In medical image
analysis, 2D convolutions are widely applied to 2D images (e.g. OCT B-Scans) (Lee et al.,
2017, Schlegl et al., 2018), whereas 3D convolutional layers are applied to 3D volumes (Çiçek
et al., 2016, Milletari et al., 2016).

�e �lter size ofW determines the receptive �eld of a convolutional �lter. To increase
the receptive �eld size, either the �lter size can be increased or multiple �lters can be iter-
atively applied, e.g. by convolving the image twice with 3×3 �lters a 5×5 receptive �eld is
obtained. �e number of �lters k controls the number of output channels (also termed
activation maps or feature maps) of the convolutional layer (Le and Borji, 2017, Schmidhuber,
2015). An increasing number of �lters increases the capacity of the network, but also the risk
of over��ing. Another hyper-parameter is the stride, de�ning the step size with which the
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convolutional �lter is slid over the image and therefore the spatial size of the output feature
maps. �e spatial size is also determined by the amount of zero-padding, a technique that
adds zero values at the border of the input (image or feature maps of previous layer) before
performing the convolution operation. �is is used to preserve the spatial size of the input
for the output, since convolution �lters can only be applied at image positions where it fully
�ts into the image. Without zero-padding, the spatial dimensions would be reduced by fs − 1,
where fs is the �lter size.

Figure 3.3(b) shows a 2D gray value image with spatial dimensions of 1 × d × d , a typical
�lter size of 3×3, zero-padding of 1 and the number of �lters being k = 4. Since the input
image has only one channel, the dimensionality of the weight matrixW is 1 × 4 × 3 × 3,
generating an output with a dimensionality of 4 × d × d .

Activation functions Since fully connected and convolutional layers only allow a linear
transformation of the input, activation functions are needed to introduce non-linearity into
the networks, enabling DNNs to learn complex non-linear transformations from inputs to
outputs. Typically, each fully connected and convolutional layer is followed by an activation
function, allowing the network to learn highly complex functions. Traditional activation func-
tions in neural networks are the sigmoid σ or hyperbolic tangent tanh function, mapping
the input to the closed intervals [0,1] and [-1,1], respectively. �ey are de�ned as:

f (x) = σ (x) =
1

1 + e−x (3.6)

f (x) = tanh(x) = e2x − 1
e2x + 1 . (3.7)

In deep neural networks both activation functions are related to the problem of vanishing
gradients (Bengio et al., 1994). �is describes the phenomenon that gradients which are com-
puted to update the parameters of the network vanish as the depth of the network increases,
leading to slow optimization convergence and poor local optima. �e problem of vanishing
gradients is addressed by recti�ed linear units (ReLUs) (Hahnloser et al., 2000), the cur-
rently most widely used activation function in deep learning (LeCun et al., 2015). It is de�ned
as follows:

f (x) =max(0,x), (3.8)

mapping the input to its positive part. �e gradient used to update the parameters of the
network is either 0 or 1 for ReLUs, meaning that the gradient does not saturate/vanish when
it is ”transferred” across a network. While ReLUs cause a mean activation greater than zero,
exponential linear units (ELUs) (Clevert et al., 2015) map the input also to negative values,
pushing the mean activation closer to zero. According to Clevert et al. (2015) this leads to
faster learning and convergence, having an e�ect similar to batch normalization but with
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lower computational complexity. It is de�ned as

f (x) =


x if x > 0

α(exp(x) − 1) if x ≤ 0
, (3.9)

where α controls the value to which an ELU saturates for negative values and is by default
set to 1.0.

Pooling �e pooling layer is also referred to as downsampling layer, since it reduces the
spatial size of feature maps. Besides the reduction of the spatial resolution, its role is also
to introduce translational invariance into DNNs (which is required e.g. in classi�cation
tasks). Pooling layers are static, i.e. they do not have learnable parameters. It aggregates
sub-regions of input feature maps (i.e. blocks) into single output values by applying a speci�c
pooling operation such as max or average pooling to the input, processing each feature map
separately (Boureau et al., 2010a,b). Besides the aggregation type, another hyper-parameter
is the block size: a commonly used se�ing is non-overlapping 2×2 max-pooling blocks that
reduce the spatial size of feature maps by a factor of 2 (Figure 3.3(c)). Pooling layers do not only
reduce the spatial size and therefore the computational costs, but also enlarge the receptive
�eld of the network and introduce invariance to small translations of the input (Saxe et al.,
2011). An alternative to pooling layers are strided convolutions, as proposed in (Springenberg
et al., 2014). �is can help to overcome issues of pooling layers when inverting neural
networks (Bruna et al., 2013), or to stabilize training of speci�c methods such as generative
adversarial networks (GANs) (Radford et al., 2015).

Batch normalization Batch normalization stabilizes the training of DNNs by normalizing
the layer inputs for each mini-batch. It has been shown that normalization of neural network
inputs helps to improve and speed up training, for instance by applying whitening1 to the
input data (LeCun et al., 2012, Wiesler and Ney, 2011). Besides the input, also intermediate
representations of neural networks can be normalized, for instance with batch normaliza-
tion (Io�e and Szegedy, 2015). Without this normalization, the distribution of layer inputs is
constantly changing during training of DNNs, due to adaptions of parameters of the previous
layer. �is e�ect known as internal covariate shi� destabilizes and slows down the training.
Batch normalization enables the use of higher learning rates and therefore accelerates the
training process. It tackles the covariate shi� e�ect by normalizing the activation outputs of
layers via mini-batch statistics. A mini-batch describes a set of input samplesB = {x1, ...,xm}

which are jointly used to adapt the model parameters in a single update step. �e following

1Whitening is a linear transformation that leads to uncorrelated features in the new representation, with
zero mean and unit variance.
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calculations are performed to normalize inputs from the previous layer:

µB =
1
m

m∑
i=1

xi , σ 2
B =

1
m

m∑
i=1
(xi − µB)

2, x̂i =
xi − µB√
σ 2
B
+ ϵ
, zi = γ x̂i + β , (3.10)

where µB denotes the mini-batch mean, σ 2
B

the mini-batch variance, x̂i the normalized input,
γ and β the learnable parameters of the batch normalization layer and zi the scaled and
shi�ed normalized activations. During test time, the learned parameters γ , β are applied and
population-wide statistics are used (i.e. mean and variance are �xed).

Beside its normalizing property, batch normalization also has a regularization e�ect onto
the model during training. �is can be explained by the fact that activations for a training
example are not deterministic, since they depend on other examples present in the mini-
batch (Io�e and Szegedy, 2015). Further details of the batch-normalization approach can be
found in Io�e and Szegedy (2015).

Dropout Dropout is a widely used regularization technique for DNNs to reduce over�t-
ting. With increasing number of model parameters θ , the capacity and power of the model
increases, but at the same time the risk of over��ing increases as well (Srivastava et al.,
2014). Over��ing describes the phenomenon that the model does not only learn the under-
lying structure of data, but also the noise which is present in the training set. �is leads to
good performance on the training set and to low generalizability (i.e. high generalization
error on validation/test sets) at the same time. Regularization techniques help to reduce the
generalization error.

A widely used regularization approach is dropout, where activations are randomly set to
zero while performing a feed-forward pass during training (Hinton et al., 2012b, Srivastava
et al., 2014). A visualization of dropout is presented in Figure 3.3(d). �e idea is that co-
adaptions of features are minimized, making the individual layers and therefore the overall
model robust with respect to random perturbations of the input. Dropout can be applied to
convolutional as well as fully connected layers. Every single activation value in the input x is
multiplied with a Bernoulli random variable r which takes the value 0 with probabilityp and 1
with probability 1−p. �e only hyper-parameter of the dropout layers is p, termed as dropout
probability. Dropout is not applied at testing time, but taken into account by multiplying the
layers weights with 1 − p, ensuring that for each neuron the expected matches the actual
output distribution at test time. Dropout can be seen as sampling randomly thinned networks
from the basic network during training, while during testing an averaged prediction from
these individual ”experts” is obtained. In contrast to bagging where multiple models are
trained on di�erent subsets of data, dropout operates in the feature space, each model is
trained for only one step and all of the models share parameters.

�ere exist also other techniques to avoid over��ing. Examples are DropConnect (Wan
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et al., 2013) or adding regularization terms in the objective function (e.g. weight-decay) (Krogh
and Hertz, 1992).

Optimization �e optimization of DNNs aims at learning optimal model parameters for a
given task with a speci�c loss function. �e training (or optimization) of deep neural networks
can be divided into three steps which are constantly repeated throughout the optimization:
(1) forward pass, (2) backpropagation and (3) weight update. Additionally, intialization
of model parameters is done once before the training starts. Commonly used advanced
initialization procedures such as Xavier (Glorot and Bengio, 2010) or He initialization (He
et al., 2015) perform a speci�c random initialization of the network weights to speed up
training.

�e training procedure starts with a forward pass (or forward propagation) of an input
sample through the network. Activations are computed layer by layer, starting with the �rst
layer close to the input through until the output layer. �e prediction of the network is then
compared with the ground-truth target label, particularly by computing a loss (or prediciton
error) using the task speci�c objective function J(θ ) (Section 3.1.1). �e backpropagation
algorithm (Rumelhart et al., 1986) is used to compute the contribution of each unit in every
layer to the prediction error. �is is done by calculating the partial derivatives of the network
parameters with respect to the computed error. Finally, the partial derivatives (or gradients)
are used to update the model parameters, called weight update. �e step size of the update
in the parameter space (Duda et al., 2001) is determined by a hyper-parameter called learning
rate.

Various optimization algorithms are based on this principle. Stochastic gradient descent
(SGD) updates the model parameters a�er each forward pass of a single input sample. In
contrast, batch gradient descent (BGD) computes the average gradient over all samples in
the training set, which leads to more stable estimations of the gradients, but at the same
time slows down the training (number of updates per computation decreases). Mini-batch
gradient descent (MBGD) constitutes a trade-o� between SGD and BGD, since a parameter
update is based on the average gradients over a subset of the training data. �ese three
approaches di�er in terms of the number of samples which are used to calculate a single
update step (Bengio, 2012, Ruder, 2016). Typically, the training set is passed multiple times
during training, where one pass is termed epoch. Other examples for advanced gradient
descent based optimization algorithms that are widely used to train deep neural networks
include Momentum (Qian, 1999), Adagrad (Duchi et al., 2011), RMSprop (Hinton et al., 2012a)
or Adam (Kingma and Ba, 2014). An overview of gradient descent methods can be found
in (Ruder, 2016).
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3.2.2 Supervised deep learning

�e above introduced deep learning building blocks are combined in various ways to solve
di�erent learning tasks. A widely used family of architectures can be subsumed under the
term convolutional neural network (CNN). Convolutional layers are the core building
blocks of CNNs, where the basic structure consists of multiple convolutional layers stacked
on top of each other, each followed by an activation function and pooling layers. �ey reduce
the spatial dimensionality of the representation layer by layer and capture the context and
relevant features for the given task. In classi�cation tasks, this structure is typical followed
by fully connected layers and a �nal classi�cation layer. Since CNNs encode the important
features of an input image, this kind of architecture is also referred to as encoder.

One of the milestones in the development of deep learning is the work of LeCun et al.
(1989), where the backpropagation algorithm was applied to train a CNN. �e �rst successful
real-world application of a CNN was presented in LeCun et al. (1998) for hand-wri�en digit
recognition. However, it took three days to train this relatively small network LeNet-5 (ap-
proximately 60 thousand parameters). In this context, Cireşan et al. (2010) introduced a fast
implementation of CNNs on graphics processing units (GPUs). Since the training of modern
deep learning architectures heavily relies on the computational power of GPUs, this work
provided an important contribution to the development of deep learning. With the increasing
computational power, superhuman pa�ern recognition performance could be achieved for
the �rst time in Cireşan et al. (2011, 2012). A similar network known as AlexNet was proposed
in Krizhevsky et al. (2012). It had more than 60 million parameters, was trained on two GPUs
and won the large-scale ImageNet (Deng et al., 2009) challenge, where algorithms are trained
on more than 1.2 million images to distinguish 1000 di�erent classes. �ese architectures
used sigmoid or hyperbolic tangent activation functions, had kernels with large receptive
�elds and were quite shallow, with two to �ve convolutional layers only. More recent ar-
chitectures such as VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015),
Inception-v3 (Szegedy et al., 2016), ResNet (He et al., 2015) or DenseNet (Huang et al., 2017)
have a deeper structure with up to several hundreds of layers, use a smaller �lter size and
di�erent activation functions such as ReLUs.

Besides classi�cation, semantic segmentation is also a common task in both natural
and medical image processing. As discussed in Section 3.1.2, segmentation can be done
by iteratively classifying individual pixels based on patches, or by predicting the whole
segmentation map at once. One drawback of the patch-based approach is that input patches
from neighbor pixels have a large overlap and the same convolutions are computed multiple
times. Examples for deep learning approaches following this strategy are Ciresan et al. (2012)
or Schlegl et al. (2015). In 2015, Ronneberger et al. (2015) proposed the U-net, an encoder-
decoder architecture that predicts the whole segmentation map for the input at once and is
built upon the fully convolutional net (Long et al., 2015). �e basic architecture is illustrated
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Figure 3.4: Schematic illustration of the U-net architecture. An input image of size 512×512
with one channel is fed to the network. The encoder on the le� side contracts the input,
while the decoder on the right side recovers the spatial resolution. Blue boxes correspond
to the feature map representation, while purple boxes represent copied feature maps. The
layers of the network are depicted as arrows. The number of channels in the output layer
corresponds to the number of predicted classes.

in Figure 3.4. �e encoder follows the typical structure of convolutional neural networks:
it consists of convolutional blocks (multiple convolutions with ReLU activation functions),
followed by max-pooling layers. �e encoder serves as contraction path that reduces the
spatial dimensionality, learns high-level abstract features and captures the context. �e
decoder counterpart performs up-sampling operations of the encoded representations and
concatenates them with the encoder feature maps of the next level (same spatial resolution)
through shortcut-connections, followed by convolutional blocks. In this way, the contracted
information of the encoder is gradually recovered by the decoder (i.e. object details, spatial
dimension), allowing the model to obtain a segmentation map that matches the size of the
input image. No fully connected layers are used in this architecture. While the original
U-net was presented for segmentation of 2D biomedical images, U-net based 3D volume
segmentation algorithms have been proposed in Çiçek et al. (2016), Milletari et al. (2016).
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Figure 3.5: Illustration of unsupervised learning approaches. (a) In traditional autoencoders
(AEs) the input is mapped to an embedding h using an encoder, aiming at reconstructing the
original input through a decoder. (b) The denoising AE reconstructs the original input from
a corrupted version in order to get invariant to noise, capturing the underlying structure
of the data at the same time. (c) A variational AE puts an additional prior p(h) on the
embedding, constituting a generative model. (d) In the training of generative adversarial
networks (GANs), a generator learns to generate samples that follow the distribution of the
training set, while a competing discriminators tries to distinguish fake from real samples.

3.2.3 Unsupervised deep learning

While impressive results have been achieved with supervised deep learning methods, they
rely on large-scale labeled datasets. �is is a serious limitation especially in medical image
analysis, which is one of the reasons why unsupervised deep learning methods have gained
a�ention as well.

Autoencoders (AEs) consist of an encoder and a decoder. Trained without labels, the en-
coder maps the input x to a lower-dimensional representation h and the decoder reconstructs
the original input from this embedding. �e di�erence between the original input x and the
reconstruction x̃ is used as error signal to train the AE. A commonly used reconstruction
loss is the MSE (Section 3.1.1). �e underlying assumption is that the output can only be
reconstructed if the learned embedding captures the underlying structure of the data (Baldi,
2012, Erhan et al., 2010). However, if the intermediate representation would have the same
size as the input and no non-linear activation functions were added, the model would only
”learn” the identity function (Litjens et al., 2017). To prevent trivial solutions and to enhance
the learning process, Poultney et al. (2007) proposed to use sparsity constraints on the inter-
mediate representation h. Other work proposed denoising autoencoders, where the model
is trained to reconstruct the original input from a corrupted version, e.g. by randomly se�ing
values to zero or applying salt-and-pepper-noise (Vincent et al., 2008).
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In the simplest form of AEs, the input is encoded and reconstructed with only two con-
secutive fully connected layers. Deeper fully connected networks are traditionally trained
in a greedy layer-wise fashion, where layers are trained and stacked on top of each other
consecutively, one a�er another (Bengio et al., 2007). A di�erent strategy to train deep auto-
encoders is to optimize all layers jointly at once, which can help to overcome some limitations
of the greedy layer-wise scheme (Zhou et al., 2015). Convolutional layers have also been used
in the context of autoencoders, where multiple convolutional layers form a convolutional
autoencoder (CAE) (Masci et al., 2011, Zhao et al., 2016). Autoencoders have also been
applied in medical image analysis, e.g. for computer-aided diagnosis (Cheng et al., 2016) or
breast density estimation (Kallenberg et al., 2016).

Variational autoencoders (VAEs) as well as deep belief networks (DBNs) are also
based on the principle of unsupervised representation learning by reconstructing the input.
While DBNs can be seen as a composition of restricted Boltzmann machines (RBMs) (Bengio
et al., 2007, Hinton et al., 2006), variational autoencoders regularize the representation h

to follow a pre-de�ned distribution via an additional term in the loss function, namely a
standard normal distribution with zero mean and unit variance (Kingma and Welling, 2013).
Hence, the VAE is a generative model whose regularized, continuous embedding allows to
draw random samples from the latent space or generate variations of an input image.

Another family of generative models are generative adversarial networks (GANs),
where two networks (generatorG, discriminator D) are trained unsupervised in a competing
two player game (Goodfellow et al., 2014). �e generator aims at generating realistic data
samples that follow the training data distribution, while the objective of the discriminator
is to di�erentiate between real samples from the training set and generated samples. At
the end of the training, the generator has learned to generate realistic images. �e training
of GANs can be di�cult: the power of both G and D must be balanced during training to
allow continuous improvement of both networks, convergence is hard to achieve due to the
characteristic of the minimax game and mode collapse is hard to avoid. Several works have
been presented to address these issues (Gulrajani et al., 2017, Metz et al., 2016, Radford et al.,
2015, Salimans et al., 2016).

In Pathak et al. (2016), the concepts of AEs and GANs are combined with each other in a
context encoder. A connected region is removed from the input, where the objective of the
deep learning model is to reconstruct the original input with a encoder-decoder architecture.
In addition to the reconstruction loss, an adversarial loss is provided through the discriminator
that distinguishes between original and reconstructed images. �e assumption is that the
context encoder needs to understand the content of the image and must be able to produce a
plausible hypothesis for the missing part in order to succeed at this task. An unsupervised
learning algorithm solely based on context information has been presented in Doersch et al.
(2015), using the relative position of two patches to each other as training signal.
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3.2.4 Bayesian deep learning

Besides the deterministic output of models, providing the uncertainty of predictions is crucial
to understand characteristics and limitations of trained models and the underlying task. �is
is of particular importance in the medical domain, where the model might not be able to
generalize to every possible scenario due to the large variety of visual appearances and
artifacts. In fact, producing deterministic outputs without reasoning hinders the adoption
into clinical routines (Nair et al., 2018). Providing uncertainty estimates for predictions
would facilitate subsequent revision by clinicians, referring cases with uncertain diagnosis
for further testing (Leibig et al., 2017, Nair et al., 2018).

Bayesian deep learning describes the family of deep learning approaches that can also
model uncertainty. It combines the power of deep learning with Bayesian probability theory,
enabling the network to infer complex multi-modal posterior distributions. In principle there
are two types of uncertainty, namely aleatoric uncertainty and epistemic uncertainty,
which are illustrated in Figure 3.6. �e former describes the uncertainty which is related
to the information that cannot be explained by the data (Der Kiureghian and Ditlevsen,
2009). For instance, occluded objects or a lack of visual features in images (e.g. because of
noise) will cause higher aleatoric uncertainty. �e more explanatory variables which are
relevant for the given task are present in the data, the lower it is. More precisely, aleatoric
uncertainty can be subdivided into homoscedastic (task-dependent) and heteroscedastic (data-
dependent) aleatoric uncertainty. While homoscedastic uncertainty depicts the uncertainty
that is inherent in a speci�c task (staying constant for all input samples and varying between
tasks), heteroscedastic uncertainty depends on the input (Kendall and Gal, 2017). In contrast,
uncertainty is categorized as epistemic if it can be reduced by observing more data or re�ning
the model (Der Kiureghian and Ditlevsen, 2009, Kendall and Gal, 2017). In other words, it
refers to uncertainty that emerges due to informations that in principle could have been
captured, but were not. It is also referred to as model uncertainty.

In Bayesian deep learning, epistemic uncertainty is computed by modeling a posterior
distribution p(W |X ,Y ), where W are the weights of the network, X is the training data
set and Y the corresponding set of labels. Since �nding the true underlying posterior dis-
tribution is computationally intractable in practice, it needs to approximated. In Gal and
Ghahramani (2015), the authors proposed Monte Carlo (MC) dropout sampling to approxi-
mate the posterior distribution with q(W ), minimizing the Kullback-Leibler (KL) divergence
KL(q(W )| |p(W |X ,Y )). First, the model is trained using dropout. �en, dropout is also ap-
plied during test time, which allows to retrieve multiple MC samples by processing the same
input multiple times. �e mean of the output can be used to obtain a single estimate of the
prediction, and the standard deviation of the output re�ects an estimate of the epistemic
uncertainty of the model (Gal and Ghahramani, 2015, 2016, Kendall et al., 2015).

While Monte Carlo dropout sampling performs variational inference to obtain epistemic
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(a) (b) (c) (d) (e)

Figure 3.6: Illustration of the di�erence between aleatoric and epistemic uncertainty. The
(a) input image, (b) ground-truth, (c) semantic segmentation, (d) aleatoric uncertainty and
(e) epistemic uncertainty. The aleatoric uncertainty is high at object boundaries and ob-
jects which are far away from the camera, capturing the noise inherent in the observations.
Epistemic uncertainty captures the model uncertainty which can be reduced by observing
”enough” data. In the bo�om row, the model fails to segment the sidewalk due to high
epistemic uncertainty. Training the model with more samples of similar appearance could
reduce epistemic uncertainty. Figure used with permission of the rights holder: Kendall and
Gal (2017).

uncertainty estimates, a maximum a posteriori probability (MAP) inference technique is pro-
posed in Kendall and Gal (2017) to model heteroscedastic aleatoric uncertainty, by changing
the loss function of the deep learning model. Instead of only predicting ŷ, also the observa-
tion noise σ is predicted by the model, representing an estimation of aleatoric uncertainty.
Considering a loss function ‖y − ŷ‖2, the adapted loss according to Kendall and Gal (2017) is
de�ned as:

‖y − ŷ‖2
2σ 2 +

1
2 logσ 2. (3.11)

�e model will learn to a�enuate the �rst term by higher uncertainty σ 2 in cases of bad
predictions ŷ. At the same time, the second term regularizes the magnitude of uncertainty.

3.3 Performance measures

To evaluate the performance of a trained model in a quantitative way, various measures
are available. In classi�cation tasks, the following statistical measures are commonly used:
accuracy, sensitivity, speci�city and precision (Sokolova and Lapalme, 2009). All these
measures can be described using the four possible outcomes depicted in the confusion matrix
of Table 3.1: the number of true positives (TP), false positives (FP), false negatives (FN) and true
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Table 3.1: Confusion matrix of possible test outcomes.

True value
Positive Negative

Prediction Positive True positives (TP) False positives (FP)
Negative False negatives (FN) True negatives (TN)

negatives (TN). Each of these individual statistical measures provides a speci�c view on the
performance. Combined evaluation measures such as the receiver operating characteristic
(ROC) curve, Sorensen-Dice index or precision-recall (PR) curve allow a joint evalua-
tion of two complementary measures. In regression-tasks, evaluation measures such as the
mean absolute error or coe�cient of determination can be used.

Accuracy Accuracy describes the proportion of correct test results:

accuracy = TP +TN

TP +TN + FP + FN
. (3.12)

It is only an appropriate performance measure if the number of samples between classes
are balanced, since accuracy will be biased towards the prominent class in an imbalanced
se�ing. �is measure is therefore less conclusive in medical image analysis, where the class
of interest (e.g. a pathological structure) is o�en underrepresented (Litjens et al., 2017).

Sensitivity Sensitivity is also known as recall or true positive rate (TPR). It is de�ned as
the proportion of true positives which are actually predicted positive. �erefore it describes
the ability of the model to detect samples associated with a positive ground-truth label:

sensitivity = recall = TPR = TP

TP + FN
. (3.13)

Speci�city �e amount of correctly identi�ed negative samples is determined by speci�city
(or true negative rate (TNR)):

speci�city = TNR = TN

TN + FP
(3.14)

Precision Precision (or positive predictive value) is the proportion of predicted positives
which are actual positive:

precision = TP

TP + FP
. (3.15)

Receiver operating characteristic (ROC) curve Sensitivity or speci�city should not be
interpreted isolated from each other. For instance, if a classi�er assigns negative labels to all
instances, speci�city is 1 while sensitivity is 0. �e trade-o� between these two measures
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Figure 3.7: Relationship between the model output and the evaluation curves. On the le�,
the two density functions denote the distribution of positive and negative instances with
respect to the output of the model (e.g. probability of assigning the positive class), separated
by a threshold τ . The ROC and precision-recall curves are shown on the bo�om and top
right, respectively.

can be visualized with the ROC curve by plo�ing the sensitivity against the false positive
rate (FPR), de�ned as:

FPR = 1 − speci�city = FP

TN + FP
. (3.16)

�e curve is generated by calculating sensitivity and FPR values at varying threshold (τ )
values of the model output, e.g. the probability of assigning the positive class (Figure 3.7).
�e be�er the underlying model, the closer the ROC curve is to the top le� corner, while the
diagonal line corresponds to random performance. Area under ROC curve (AuC) is one way
to summarize of the ROC curve in a single value (Sokolova and Lapalme, 2009). It can be
interpreted as the average value of sensitivity for all values of speci�city, or as aggregated
classi�cation performance (Hajian-Tilaki, 2013). In general, the ROC curve is not a good
measure in the se�ing of highly imbalanced data, since the FPR is not sensitive to false
positives if the total number of negative instances is huge.

Sørensen-Dice index �e Sørensen-Dice index is also known as Dice score, Dice coe�cient,
F1-score or F-measure and combines precision and recall in one single number (Dice, 1945,
Sørensen, 1948). It is de�ned as

Dice = 2 · precision · recall
precision · recall =

2 · TP
2 · TP + FP + FN =

2 · |A ∩ B |
|A| + |B |

, (3.17)

where A and B are two binary sets of ground-truth and predictions, with |A| and |B | the
numbers of positive elements in each set. Compared to AuC, the Sørensen-Dice index is
be�er suited for imbalanced class se�ings, since it is sensitive to the number of false positives

46



and independent from the number of true negative instances (Fawce�, 2004). Due to this
characteristic and the fact that segmentations can be interpreted as a set of classi�cations, it
is o�en used to evaluate segmentation results (Taha and Hanbury, 2015).

Precision-recall (PR) curve Instead of calculating a single value (Sørensen-Dice index),
the precision-recall curve provides a graphical illustration of model performance. In contrast
to the ROC curve, it shows the trade-o� between precision and sensitivity (or recall), what
makes it the more reliable performance visualization technique in the case of imbalanced
classes (Saito and Rehmsmeier, 2015).

Mean absolute error (MAE) In regression tasks, MAE represents a commonly used tech-
nique to evaluate the performance of continuous predictions. It has a clear interpretation
and is de�ned as:

MAE = 1
n

n∑
i=1
|yi − ŷi |, (3.18)

where yi and ŷi are the ground-truth and prediction values, respectively.

Coe�cient of determination �e coe�cient of determination is also known as goodness
of �t or R2. Ranging from 0 to 1, it describes the proportion of variance in the data that is
explained by the regression model (0% to 100%) (Draper and Smith, 2014). It is de�ned as:

R2 = 1 − variation of residuals
variation of y = 1 − SSres

SStot
= 1 −

∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)

2 , (3.19)

where ȳ is the mean of the ground-truth target values, SStot the total sum of squares and SSres
the residual sum of squares.

3.4 Summary

In this chapter we have described machine learning as well as deep learning fundamentals,
forming the methodological background of this thesis. In particular, we covered learning
tasks, training principles and basic architectural elements of deep learning models which
are used in Chapter 5, Chapter 6 and Chapter 7, forming the context for these presented
approaches.

All three manuscripts present deep learning approaches, meaning that they are built upon
basic elements of deep learning such as convolutional and fully connected layers, activation
functions, pooling, batch normalization and dropout. In particular, Chapter 5 proposes an
anomaly detection method based on unsupervised learning, aiming at semantic segmentation
of anomalies in retinal OCT images. A subsequent clustering of anomalies is used to iden-
tify marker candidates. In contrast, a weakly supervised learning technique is proposed in
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Chapter 6, detecting anomalies by using a U-net model jointly with Bayesian deep learning.
Furthermore, the unsupervised representation learning technique presented in Chapter 7 is
both experimentally evaluated in a qualitative and quantitative way, e.g. in a regression task.
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CHAPTER4
Image Biomarker Discovery using

Machine Learning

“The best way to predict the future

is to create it.”

– Abraham Lincoln

Biomarker discovery describes the process of identifying patient characteristics that
re�ect the biology and the mechanisms of the underlying disease (Group et al., 2001b,

Lassere et al., 2007, Medeiros, 2015). As discussed in Section 1.1, it plays a crucial role for
precision medicine. Powerful biomarkers can improve the accuracy of diagnoses or allow
to detect diseases at an earlier stage. �is helps to reduce the burden on the patients and
the medical system, since early diagnosed patients can o�en be treated easier than patients
which are diagnosed too late. In the context of retinal diseases, the need for new expressive
biomarkers to improve individual patient health care is also highlighted by the fact that the
number of patients su�ering from AMD is expected to increase, e.g. the number of late AMD
cases is estimated to almost double by the year 2040 (Colijn et al., 2017).

Moreover, biomarkers can inform our understanding of the pathogenesis of a speci�c
disease. For instance, speci�c pathologic changes which are captured by medical imaging
could act as risk factors, facilitating the distinction of patients into di�erent risk groups (Cho
et al., 2012, Schrag et al., 2000). Biomarkers also pave the way to di�erentiate individual
disease progression paths (Paulovich et al., 2008, Yu and Hung, 2000), as highlighted in
Figure 4.1. �is means that the exploration of new biomarkers enables an optimization of
existing treatments and patient management by both assessing the risk and tracking the
disease progression at a �ner level (Hughes et al., 2006, Nalejska et al., 2014). Additionally,
the gained knowledge about disease pathogenesis can be used to develop new treatments and
drugs (Perlis, 2011). Finally, novel biomarkers can act as new surrogate endpoints in clinical
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Figure 4.1: Schematic illustration of disease progression paths. Patients with similar progres-
sion paths form sub-groups. For instance, these can be characterized by varying medication
needs or treatment responses. Expressive biomarkers are necessary in order to allow early
and accurate diagnosis (red), early identification of patient subgroups (blue) and tracking of
disease progression (green).

trials, allowing to assess the e�cacy and characteristics of a therapy in a more comprehensive
way (Lassere et al., 2007, Medeiros, 2015).

Unfortunately, transforming data into high-quality biomarkers that are robust and pre-
dictive is challenging (Wang et al., 2017). In this Chapter we present an overview of di�erent
approaches how to perform biomarker discovery in the context of medical imaging. �e list
of strategies is not intended to be complete, rather we focus on how recent developments in
machine learning can facilitate biomarker discovery.

4.1 Supervised prediction

�e traditional approach of biomarker discovery is illustrated in Figure 4.2(a). It involves
the development of a hypothesis based on professional experience, a speci�c observation or
theoretical motivation. Studies are then conducted to verify or reject this hypothesis. Tradi-
tional machine learning methods are trained with hand-cra�ed features on speci�c manually
de�ned outcome variables. �e investigated features (which are the biomarker candidates)
are de�ned manually, a priori. On one hand, this allows a more direct interpretation of the
prediction results since the used features are known, e.g. using the feature importance mea-
sures provided by random forests (Breiman, 2001). On the other hand, this limits the data
exploration to manually de�ned candidates. Moreover, outcome variables are also needed to
develop and train the model.

�ere are various examples for this type of approach. �e capability for early breast
cancer diagnosis of manually de�ned serum features was evaluated in Opstal-van Winden
et al. (2012), where antigen protein concentrations in serum samples were used to train a
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Figure 4.2: Various strategies for biomarker discovery are depicted. While the first two
strategies (a-b) investigate pre-defined lesions and can be seen as hypothesis verification pro-
cedure, the other shown approaches (c-e) can be interpreted rather as hypothesis-generation
strategies.

random forest model. In Lad et al. (2018), the thickness of inner retinal layers was evaluated as
biomarker in the context of Alzheimer’s disease. �ickness measurements of speci�c retinal
layers were also investigated in Farsiu et al. (2014), namely to predict the presence of AMD
with a linear model (Dobson and Barne�, 1990).

4.2 Supervised deep learning for lesion segmentation

An alternative strategy involves the segmentation of speci�c marker candidates in images
(Figure 4.2(b)). Supervised deep learning o�ers a powerful alternative to traditional machine
learning algorithms. While non-data driven approaches require domain expert knowledge
to perform careful engineering of hand-cra�ed features for model training, supervised deep
learning methods avoid biases due to manual design of features by automatically learning
from data.

Based on a hypothesis, �rst a speci�c image structure of interest is de�ned. �en, manual
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annotations need to be generated by experts in order to train a deep learning algorithm to
segment these structures of interest. �e trained segmentation model can then be used to
segment large-scale image datasets, which allows a subsequent statistical analysis of the
segmented structure. Furthermore, the segmentation results can also be used as features in
the traditional pipeline of biomarker discovery (Section 4.1).

�is strategy utilizes the power of deep learning approaches and allows a large-scale anal-
ysis. However, this analysis is limited to a priori de�ned markers of interest, requires manual
annotation of images which can be costly to obtain and the results may su�er from intra-
or inter-grader variability (Asman and Landman, 2011). Moreover, the training set should
consist of a representative patient cohort in order to achieve an acceptable generalization
performance.

Supervised lesion segmentation is presented in Schlegl et al. (2018), where a deep learning
algorithm is trained to segment macular �uid in OCT scans. �e task of segmenting brain
lesions is tackled in Kamnitsas et al. (2017), Nair et al. (2018), Roy et al. (2018). An example
for using segmentation results in a subsequent analysis is this is the work of Schmidt-Erfurth
et al. (2018a), where automatically segmented OCT structures such as IRF and SRF were
correlated with visual function (BCVA) and used to predict BCVA at a future time point.

4.3 Outcome prediction using supervised deep learning

�e above mentioned strategies are e�ective for checking a speci�c hypothesis or investigat-
ing a priori de�ned biomarker candidates. However, they are limited to pre-de�ned features
or structures of interest. Alternatively, supervised deep learning models can be trained on
large-scale annotated data to predict particular outcome variables, including diagnoses or
functional parameters. Assuming that the networks will learn to capture features in the input
images that are relevant for the given task, a subsequent analysis of the model is performed
(Figure 4.2(c)). Appropriate visualization techniques are needed to identify the learned fea-
tures which are important for the prediction task and to understand the properties of the
model. �ough this evaluation allows the exploration of relationships between the target
value and the input data, it represents a di�cult and complex task that needs expert knowl-
edge. In addition, due to the complexity of the prediction task, a large number of samples
with known or annotated outcomes which form a representative patient cohort is needed
to train the model. Moreover, only features that are relevant for the de�ned target variable
are learned, which means that features that are relevant for other tasks or di�erent problem
de�nitions might be missed.

In Rajpurkar et al. (2017), a supervised deep learning model was trained to detect pneu-
monia based on chest X-rays as input. �ey used a technique called class activation mapping
(CAM) (Zhou et al., 2016) to interpret the network predictions by producing heatmaps that
visualize which areas of the input image were most relevant for the prediction. Cardiovas-
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cular risk factors were predicted from fundus photographs in Poplin et al. (2018). Here, the
so� a�ention heatmap approach (Xu et al., 2015) was used to identify the anatomical regions
that were relevant for the model predictions. Esteva et al. (2017) presented a deep learning
method to classify skin cancer using images and provided saliency maps for a qualitative
evaluation. Another visualization technique called occlusion testing was used in Kermany
et al. (2018), where retinal diseases are classi�ed based on OCTs.

4.4 Unsupervised feature learning

�e main drawback of the supervised strategy presented in Section 4.3 is the requirement of
large-scale annotated data. For instance, Rajpurkar et al. (2017) used 112,120 images to train
the model, the training in Esteva et al. (2017) involved around 130,000 images and Poplin et al.
(2018) used samples coming from over 284,000 patients. Clearly, this amount of labels is costly,
and infeasible to obtain in many scenarios. Unsupervised deep representation learning on
unlabeled datasets o�ers an alternative approach to automatically learn features from the data,
omi�ing the need for large-scale annotations. �e idea is to capture phenotype characteristics
of the patient population with the learned features (Figure 4.2(d)). �e assumption is that
they will be disease-speci�c but general at the same time. General in the sense that they
are capturing prominent characteristics of the patient population, and not only features
which are important for a particular task (cf. Section 4.3). In other words, this means that
the learned features are not biased towards a speci�c prediction task. At the same time, this
approach may be prone to ”overlook” characteristics which appear rarely (but are nevertheless
important for a speci�c task). �e learned features can be evaluated in various ways, e.g. the
discriminative power can be assessed in a prediction task by training a separate classi�er
with the learned features. As for the previously presented strategies, a representative patient
cohort is needed to train the model here as well. Chapter 7 presents a method that performs
unsupervised representation learning from images with the aim to identify relevant disease-
speci�c phenotype characteristics.

4.5 Anomaly detection

Anomaly detection o�ers an interesting alternative in the context of biomarker discovery. It
is de�ned as the family of approaches that detect samples which di�er from the distribution
of normal data used during training (Pimentel et al., 2014). In general, anomaly detection
can be seen as a two-step process: �rst a model of normal appearance is learned, and then it
is applied to detect deviations from this normal data (anomalies) during test time (Pimentel
et al., 2014). Anomaly detection methods have been proposed in various disciplines such as
hyperspectral remotely sensed imagery (Ma�eoli et al., 2014), video surveillance (Del Giorno
et al., 2016, Kumaran et al., 2019), in medicine (Baur et al., 2018, Schlegl et al., 2017), or
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others (Chalapathy et al., 2018, Erfani et al., 2016). For instance, Erfani et al. (2016) presented
a hybrid approach where a representation is learned by a neural network in a �rst stage
and a One-Class SVM is used to detect anomalies by estimating the distribution of healthy
samples. Inspired by this idea, other works have developed one class neural networks (OC-
NNs), combining both stages into an end-to-end model to learn features that are explicitly
optimized towards the one-class objective (Chalapathy et al., 2018, Ru� et al., 2018). Another
group of techniques utilizes autoencoders to detect anomalies, assuming that the model
fails to reconstruct out-of-distribution samples not observed in the training set, leading to a
high residual error for anomalies (Ribeiro et al., 2018, Zhou and Pa�enroth, 2017). Schlegl
et al. (2017) proposed an unsupervised anomaly detection based on generative adversarial
networks (GANs) in retinal OCT images. �e model (AnoGAN ) is trained on patches coming
from healthy eyes to learn the variability of normal images, and detects abnormal patches in
new data by comparing their �t to the learned distribution. An extension of this approach
has been proposed to overcome the issue of computational ine�ciency during detection
time (Schlegl et al., 2019). Other works that use GAN based methods for anomaly detection
have been presented for telecom fraud detection (Zheng et al., 2018), abnormal crowd behavior
in videos (Ravanbakhsh et al., 2017) as well as for network activity and natural images (Zenati
et al., 2018). Furthermore, long short term memory (LSTM) networks have been used for
anomaly detection in sequential data (Ergen et al., 2017, Malhotra et al., 2015).

Generally, the detection can be performed on di�erent levels of detail (e.g. on image
or pixel level), where the detected anomalies are either known disease markers or new
biomarker candidates. While screening of clinical routine data to identify already known
lesions is one possible use-case, anomaly detection can also constitute a �rst step in the pro-
cess of biomarker discovery. In the la�er case, the identi�ed anomalies can be subsequently
transformed from marker candidates to e�ective markers in a clinical post-hoc analysis,
establishing them as novel biomarkers (Figure 4.2(e)).

Anomaly detection methods are trained only on normal data without labels. �is omits the
need of collecting a representative patient cohort with an appropriate amount and variations
of pathologies for training. While capturing all possible disease manifestations or disease
related characteristics is a challenging task (e.g. rare diseases), collecting a healthy set of
samples that captures the normal appearance can be less di�cult (Markou and Singh, 2003).
In addition, no annotations are needed, since the targets of interest (anomalies) are implicitly
de�ned by the appearance of the normal training set. �is means that this approach is not
limited to a speci�c disease or marker category, considering the fact that the training does
not rely on explicit a priori descriptions of markers and all possible deviations from normal
are detected by de�nition.

Both Chapter 5 and Chapter 6 present anomaly detection approaches for retinal OCT
images.
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CHAPTER5
Unsupervised Identification of Disease
Markers in Retinal OCT Imaging Data

“Those who love wisdom

must investigate many things.”

– Heraclitus

This Chapter contains the �rst manuscript ”Unsupervised Identi�cation of Disease Marker
Candidates in Retinal OCT Imaging Data” of the thesis, which has been published in

the journal ”Transactions on Medical Imaging”. In this manuscript, we propose to identify
and categorize anomalies as marker candidates in retinal OCT images in an unsupervised
way. In a �rst step, an anomaly detection approach is used to segment anomalous regions on
pixel-level. A multi-scale deep denoising autoencoder is trained on healthy scans, and a One-
class SVM (Schölkopf et al., 2001) is used to estimate the distribution of normal appearance
based on the learned feature representation. �e trained system can then be applied to
segment anomalies in new data. In a second step, clustering in the anomalies identi�es stable
categories. We compare our anomaly detection approach to alternative unsupervised feature
learning techniques and perform both qualitative and quantitative evaluation to assess the
performance of the proposed method.
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Unsupervised Identification of Disease Marker
Candidates in Retinal OCT Imaging Data
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Bianca S. Gerendas, René Donner, Ursula Schmidt-Erfurth, and Georg Langs

Abstract—The identification and quantification of markers in
medical images is critical for diagnosis, prognosis, and disease
management. Supervised machine learning enables the detection
and exploitation of findings that are known a priori after
annotation of training examples by experts. However, supervision
does not scale well, due to the amount of necessary training
examples, and the limitation of the marker vocabulary to known
entities. In this proof-of-concept study, we propose unsupervised
identification of anomalies as candidates for markers in retinal
Optical Coherence Tomography (OCT) imaging data without a
constraint to a priori definitions. We identify and categorize
marker candidates occurring frequently in the data, and demon-
strate that these markers show predictive value in the task of de-
tecting disease. A careful qualitative analysis of the identified data
driven markers reveals how their quantifiable occurrence aligns
with our current understanding of disease course, in early- and
late age-related macular degeneration (AMD) patients. A multi-
scale deep denoising autoencoder is trained on healthy images,
and a one-class support vector machine identifies anomalies in
new data. Clustering in the anomalies identifies stable categories.
Using these markers to classify healthy-, early AMD- and late
AMD cases yields an accuracy of 81.40%. In a second binary
classification experiment on a publicly available data set (healthy
vs. intermediate AMD) the model achieves an AUC of 0.944.

Index Terms—unsupervised deep learning, anomaly detection,
biomarker identification, optical coherence tomography

I. INTRODUCTION

The detection of diagnostically relevant markers in imaging
data is critical in medical research and practice. Biomarkers are
required to group patients into clinically meaningful subgroups
regarding disease, disease progression, or treatment response.
Imaging data provides a wealth of information relevant for
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this grouping in the form of imaging biomarkers. Typically,
image analysis methods are trained based on a priori defined
categories, and annotated imaging data. This makes large-
scale annotation necessary, which may be costly or infeasible,
limits detection to known marker categories, and, overall,
slows down the discovery of novel markers. In contrast,
unsupervised detection of anomalies and subsequent data-
driven identification of new markers offer the possibility for
unbiased classification of a disease and the identification of
novel risk factors. Unsupervised detection can extend our
knowledge about the underlying pathophysiology of diseases.
The resulting biomarkers can enable a description of the entire
spectrum of a disease, from the earliest manifestations to the
terminal stages [1]. In this proof-of-concept study, we perform
anomaly detection on retinal images to identify biomarker
candidates, categorize them, and evaluate their link to disease.

A. Clinical background

OCT [2] provides high-resolution, 3D volumes of the retina
and is the most important diagnostic modality in ophthalmol-
ogy. Approximately 30 million ophthalmic OCT procedures
are conducted per year worldwide, on par with imaging
modalities such as magnetic resonance imaging, computed
tomography, and positron emission tomography [3]. Each
position of the retina sampled by an optical beam results in a
vector, the A-scan. Adjacent A-scans form a 2D slice, alias B-
scan, which consecutively form the entire volume. Examples
of B-scans are shown in Fig. 2 on the left.

Retinal diseases causing vision loss affect many patients.
For instance, age-related macular degeneration (AMD) is the
leading cause of blindness in industrialized countries and has
a worldwide prevalence of 9% [4]. Even-though intraretinal
fluid shows some predictive value [5], we are lacking accurate
and reliable imaging markers and predictors for individual
patients disease courses. The discovery of novel reliable mark-
ers in imaging data is relevant to enhance individual care,
encompassing the identification and categorization of marker
candidates, and the quantification of their link to disease.
Not all patterns occurring in OCT volumes are understood
or interpretable, and for certain retinal diseases such as for
AMD [6], pathogenic mechanisms are not yet fully known.

Computational anomaly detection [7] and categorization is
a natural approach to tackle this problem, where the former
is defined as the detection of cases that differ from the
normal samples available during training. In retinal images
this is a difficult task for many reasons. In contrast to natural
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Fig. 1. Preprocessing of OCTs. (a) The original OCT scan with the top layer highlighted in blue and the bottom layer (Bruch’s membrane) in red. (b) The
same scan after normalization was applied (shift to horizontal plane, brightness, contrast). (c) A zoomed-in snippet of the over-segmentation result.

images, such as photographs, in retinal imaging the findings
relevant for diagnosis cover only a small fraction of the overall
volume. Furthermore, their deviation from normal tissue is
subtle compared to the variability of healthy retinas. Therefore,
to identify novel marker candidates, we form a model of
normal tissue variability, and detect anomalies deviating from
this model. In this paper, we define normal as the absence of
pathological changes beyond age-related alterations, i.e. the
only allowed visible alteration included drusen below 63 μm
in size according to the Beckman Initiative Classification [8].
This definition accounts for age-related changes that normally
do not result in visual impairment. For instance, the majority
of elderly patients shows small drusen, while still maintaining
normal vision.

Some retinal diseases such as retinal vein occlusion (RVO),
often occur unilaterally. Thus, the contralateral eye is not
affected by the acute event of the disease and can be elegantly
used as training data for the normal appearance model. In our
case, these volumes of contralateral eyes were screened by a
retinal specialist to rule out cases with pathological changes.
Since our model is purely trained on normal data, we omit
the need to collect a dataset containing a sufficient amount of
anomalies representing the entirety of their possible variability.
At the same time, the applicability of the model is not limited
to a specific disease.

B. Related Work

Anomaly detection can be a crucial first step in the process
of biomarker detection. The results of these algorithms are
affected by the quality of the features used for characterizing
the data. Supervised deep learning has recently improved the
state-of-the-art in various tasks, such as image classification
[9], object detection [10] or weakly supervised learning linking
semantic descriptions to image content [11]. It results in rich
feature representations, although at the cost of requiring large
amounts of annotated training samples and the limitation to
known markers. On the other hand, unsupervised learning en-
ables the exploitation of unlabeled data, capturing the structure
of its underlying distribution [12]–[15]. A well-known and
widely used technique for feature learning is Principal Compo-
nent Analysis (PCA) [16], which is computationally efficient,
but limited to a linear embedding. In contrast, unsupervised
deep learning of convolutional neural networks (CNNs) is
computationally more expensive, but can learn a non-linear
embedding.

In [13], unsupervised CNN training was performed by
discriminating between surrogate image classes created by
manually defined data augmentation to render the resulting
representation robust to certain transformations. Other studies
propose incorporation of supervisory signals such as spatial
context [12] to omit the requirement of manually annotated
data. In our study we identify clinically relevant biomarkers
without prior human input, which could bias the result.

The proposed anomaly detection method is inspired by the
combination of Deep Belief Networks (DBNs) with One-Class
SVMs for anomaly detection in real-life datasets, which have
considerably different characteristics compared to medical
images [17]. The DBNs learn a feature representation, while
the One-Class SVM finds a boundary describing regions in the
feature space with high probability density of the training data.
Erfani et al. [17] trained DBNs in a layer-wise fashion, and
did not use a multi-scale architecture, as we did. According to
[14], [15], the combination of joint training of layers and local
regularization constraints for each layer is more advantageous
than layer-wise training without constraints. Therefore, we
both trained the deep convolutional autoencoder (DCAE) [14]
and the deep denoising autoencoder (DDAE) [15] jointly. The
multi-scale architecture was partly inspired by [11], where
weakly supervised learning was used to link image information
to semantic descriptions of image content. Since DCAEs
are specifically designed to learn effective representation of
images, they are a logical comparison method when learning
unsupervised image representations. The idea of using normal
subjects to model a normal population is not novel. Sibide et
al. [18] modeled the appearance of normal OCT B-scans with
a Gaussian Mixture Model (GMM) and detected anomalous
B-scans as outliers. The number of outliers served as basis
for classification of an entire OCT volume. In contrast, we
aim at pixel level anomaly detection. In [19], a shape model
of normal retinal layers is used to segment anomalies. The
model has a close fit in normal regions, while there is no
fit in areas of anomalous shapes. The limitations of this
approach are that it heavily depends on the quality of the
layer segmentation algorithm and does not take into account
image information explicitly to detect anomalies. Finally,
Schlegl et al. [20] proposed AnoGAN, a deep convolutional
Generative Adversarial Network (GAN) to learn a manifold of
normal anatomical variability, in order to identify anomalous
regions in OCT images. AnoGAN is restricted to healthy
representations by definition, which makes it inappropriate for
a straightforward subsequent clustering step of anomalies. In
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contrast, we aim at learning a feature representation with our
autoencoder approach which is general enough to enable a
meaningful embedding of anomalies, though we solely need
normal training data.

Examples for the classic biomarker identification strategy
are [21], [22], where the authors used a priori defined features
in a supervised way to evaluate the applicability as biomarkers
for specific diseases. In contrary, our approach focuses on
identifying new marker candidates in an unsupervised way.

Regarding classification of retinal diseases on volume level,
main focus of related work [21], [23] is to solve the classi-
fication task itself. In contrast, here our target is to evaluate
the link of identified categories, alias marker candidates, to
disease by using them as features for classification.

C. Contribution

We propose a method to identify marker candidates in
imaging data in an unsupervised fashion. Our approach first
separates anomalous candidates from normal tissue in retinal
spectral-domain Optical Coherence Tomography (SD-OCT)
based on the features learned by DDAE on healthy sam-
ples, and a One-Class SVM to model normal appearance
distribution. We identify categories of frequently occurring
anomalies using clustering, and evaluate their link to disease.
In a qualitative evaluation, retinal experts could map part of
the categories identified by this approach to known retinal
structures. At the same time other categories remain as novel
anomaly candidates, for which results on the classification
tasks suggest that they are also linked to disease.

This paper is an extension of our previous work [24]
introducing a new feature-learning approach, and more in-
depth evaluation of anomaly detection, categorization, and the
link of these marker candidates to disease.

II. METHODS

To capture visual information at different levels of detail,
we used a multi-scale approach to perform superpixel-wise
segmentation of the visual input. While the preprocessing steps
are shown in Fig. 1, the overall architecture is illustrated
in Fig. 2. After preprocessing (Section II-A), 2D-patches
extracted from B-Scans from healthy OCT volumes were
used to train a deep denoising autoencoder model (Section
II-B), which provided an embedding that represented healthy
anatomical variability. A One-Class SVM was trained on
this embedding to obtain a boundary, which encompassed
the distribution of healthy patches (Section II-C). Using this
boundary, unseen volumes (i.e. volumes not used during train-
ing) were segmented into healthy or anomalous regions. Sub-
sequent clustering of anomalous regions partitioned anomalies
into more specific categories (Section II-D).

A. OCT Preprocessing

For all OCT volumes, we identified the top (Internal Limit-
ing Membrane - ILM) and bottom (Bruch’s Membrane - BM)
layer of the retina using a graph-based surface segmentation
algorithm [25], where the bottom layer was used to flatten

the retina by projecting it to a horizontal plane, as shown
in Fig. 1(b). The top and bottom layer of the retina are
also illustrated as blue and red in Fig. 2 at the bottom left.
This reduced the differences in appearance caused by varying
orientations and positions of the retina within the volume. We
applied brightness and contrast normalization for each B-scan
and added a constant to shift the values into a positive range.
The latter was necessary to ensure that the deep denoising
autoencoders (DDAE1, DDAE2) were able to reconstruct
the input patches (ẋ, ẍ) properly during training. Finally, we
performed over-segmentation of B-scans to monoSLIC super-
pixels, s, of an average size of 4×4 pixels [26], as illustrated
in Fig. 1(c). This merges pixels into homogeneous groups of
superpixels, which allows to perform the computations on a
reduced number of superpixels as opposed to computations on
every pixel.

Preprocessing of healthy B-scans, Ih, with h = 1, . . . , H ,
resulted in Sh superpixels, shi , for each (as illustrated in
Fig. 1), with center positions phi and i = 1, . . . , Sh, where
H denotes the number of healthy B-Scans, Sh the number of
superpixels per B-Scan, i the index of the superpixel, and h
the index of the healthy B-Scan.

B. Unsupervised Learning of Appearance Descriptors

The network architecture of the deep denoising autoencoder
consists of an encoding and decoding part. We chose three
fully connected layers, with 2048 neurons in the first, 1024 in
the second, and 512 in the third layer to build the encoder,
with the structure also denoted as 2048f-1024f-512f.
The mirrored version of the encoder (512f-1024f-2048f)
formed the decoder, as illustrated in Fig. 2. The weight
matrices of two corresponding layers were tied: Wenc = WT

dec.
All layers were followed by Exponential Linear Units (ELUs)
[27], with α = 1:

f(x) =

{
x if x > 0

α(exp(x)− 1) if x ≤ 0
(1)

The Mean Squared Error function, MSE(x, x̂), was chosen
as a loss function for training, where x denotes the input
patch and x̂ the output of the last layer of the decoder. The
autoencoder was trained jointly in an end-to-end fashion, as
proposed in [15]. In addition, we added a local constraint
to each layer by corrupting the input of every layer in the
encoder. More precisely, a fraction of the inputs was set to
zero. As opposed to layer-wise training, this corresponds to
unsupervised joint training with local constraints in each layer.

We conducted unsupervised training of two deep denoising
autoencoders (DDAE1, DDAE2) on the patches, ẋh

i and
ẍh
i , extracted at center positions of superpixels phi from the

healthy B-scans, Ih. While ẋh
i = 32 × 32 served as input

for DDAE1, DDAE2 was trained with 128 × 32 patches
ẍh
i , downsampled to 32 × 32. The provided patch sizes are

given in pixels. Both models were fixed for the subsequent
training of another denoising autencoder, DDAE3, its single-
layer architecture denoted as 256f, with the concatenated
feature vectors [ẏÿ] as input, where ẏhi = DDAE1(ẋ

h
i )

and ÿhi = DDAE2(ẍ
h
i ). All three learned encoders from
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Fig. 2. Multi-scale architecture used in the experiments. Pairs of ẋh
i = 32 × 32 (green) and 128 × 32 (red) patches were extracted at positions phi in

healthy OCTs Ih from B-scans, where the larger patches were downsampled to ẍh
i = 32 × 32, as illustrated on the left. The encoders of all unsupervised

learning modules are denoted in black, while the decoders are depicted in gray. Once learned, the encoders of DDAEent were used to create the new
feature representation zhi , for a specific superpixel shi , with position phi in the B-scan. Subsequent training of a One-Class SVM enabled the opportunity to
detect anomalous regions, a(sui ) = 1, in unseen B-scans Iu (i.e. B-Scans not used during training). In order to subdivide anomalous regions into meaningful
categories, cj , clustering was performed. This means that for each superpixel sui with position pui in an anomalous region, a cluster assignment c(sui ) was
performed. An example of anomaly detection and subsequent clustering of anomalous regions is shown on the top right.

DDAE1, DDAE2, and DDAE3 together formed the final
model, DDAEent, that gave us a 256 dimensional feature
representation, zhi = DDAEent(ẋ

h
i , ẍ

h
i ) = DDAEent(s

h
i ),

for a specific superpixel, shi , with corresponding patches
(ẋh

i , ẍ
h
i ) extracted at the central position of the superpixel,

phi . The multi-scale architecture allows to incorporate the local
information of the smaller patch and at the same time the
neighborhood and orientation information of the larger patch.

C. Anomaly Detection with One-Class SVM

Based on the learned feature representation, zhi , we esti-
mated the distribution of healthy examples with a One-Class
SVM [28], using a linear kernel. The SVM searches for a
boundary that describes the distribution of normal data, which
serves as a decision boundary for unseen data. New samples
can then be classified either as coming from the same data
distribution if lying inside the boundary (0, normal) or not (1,
anomaly). Since we used a linear kernel for One-Class SVM,
the only hyper-parameter was ν. This parameter determines
the amount of normal training data that must lie within the
boundary, i.e., which is detected as normal. For example, a
value of 0.1 means that 90% of the training samples are within
the boundary. In this work, we chose the parameter value with
the highest dice score on the validation set for the final model.

For unseen B-Scans, Iu, with u = 1, . . . , U , features zui
and the corresponding class a(zui ) = {0, 1} were computed
for each superpixel, sui , with position pui within the top and
bottom layer of the retina, where U denotes the number of
unseen B-Scans. The computed class label a(zui ) was assigned
to the entire superpixel: a(zui ) = a(sui ). This provided a
segmentation of the retina into two classes at superpixel level.

D. Categorization of Anomalous Regions

We used spherical K-means clustering [29] with cosine dis-
tance to sub-segment anomalous superpixels a(sui ) = 1, which
have been classified as anomalous by our method in the first
stage, in unseen B-Scans into C clusters, c(sui ) = c(zui ) = j,
with j = 1, . . . , C. More precisely, we trained a cluster model
using the 256 dimensional feature representation z on an
”anomaly training set”, that was composed of samples with
a(zui ) = 1 only, to obtain cluster centroids cj . The number of
cluster centroids, C, was determined by an internal evaluation
criterion called the Davies-Bouldin (DB) index [30], calculated
on the anomaly training set. A small value indicates compact
and well-separated clusters, hence, the model with the smallest
DB index was selected.

To segment an unseen B-Scan Iu, each superpixel with the
property a(sui ) = 1 got a cluster assignment, c(sui ), where
c(sui ) gives the index, j, of the nearest cluster centroid, cj . To
facilitate reading, we omitted indices i, h, and u henceforth.

III. EVALUATION

Our evaluation tests: (1) if the proposed algorithm can iden-
tify anomalous regions in imaging data, (2) if the algorithm
can detect stable categories of anomalies, and (3) if these
categories can serve as disease markers.

Data: We used n=786 OCT volumes from just as many
patients from our database, which was divided into six sub-
sets1: Healthy (training n=283, test n=33), late AMD (cate-
gorization n=362, validation n=5, test n=26), and early AMD
categorization n=77. The volumes of healthy training and test
were selected from 482 / 209 contralateral eye scans of patients
with RVO / AMD in the other eye. Volumes with pathological
changes beyond age-related alterations were excluded. The

1An overview of the data and experiments can be found in the supplemen-
tary material
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Original

Ground Truth

PCA256

{0.66, 0.63, 0.35, 0.34}

PCA0.95

{0.64, 0.71, 0.38, 0.32}

DCAE

{0.71, 0.67, 0.32, 0.36}

DDAEent

{0.68, 0.67, 0.37, 0.35}

Fig. 3. Anomaly detection: for each column, the same B-scan is illustrated, where red and blue colors indicate healthy and anomalous areas. To guarantee
objectivity, the first (last) two columns show examples with highest (lowest) dice of DDAEent. Dice values are provided for each method and sample. The
full quantitative evaluation result is given in Table I.

volumes of late AMD were eyes with active neovascular
AMD, where a retina specialist manually annotated all areas
that contained pathologic features in 31 OCT volumes. These
volumes with voxel-wise annotations of anomalous regions
were randomly divided into late AMD validation and late
AMD test. The volumes in early AMD categorization were
classified by clinical retina experts as early, non-neovascular
AMD according to [8]. All image data was anonymized and
ethics approval was obtained for the conduct of the study from
the ethics committee at the Medical University of Vienna.

The volumes were acquired using Spectralis OCT instru-
ments (Heidelberg Engineering, GER), with a voxel dimen-
sionality of 512 × 496 × 49, which depicted a 6mm ×
2mm× 6mm volume of the retina, with the voxel spacing of
11μm×4μm×120μm. Thus, one OCT volume is composed of
49 B-scans, where the distance between B-scans is 120μm. All
volumes were preprocessed as described in Section II-A. Due
to the anisotropy of the imaging data, the proposed approach
works with 2D patches extracted from B-scans. Pairs of image
patches with pixel size of 32×32 and 128×32 were extracted,
illustrated for a single position in Fig. 2, on the left.

Additionally, we used 384 Bioptigen SD-OCT volumes (269
intermediate AMD, 115 control) from a publicly available

dataset [21]. Since this dataset differs in appearance from
our database (different OCT vendor), we conducted additional
preprocessing steps: non-local means noise filtering, resizing
B-scans to match the Spectralis B-Scans in resolution, and
adjustment of image intensity values. Details can be found in
the supplementary material.

Training Details: All networks were trained on the
healthy training set for 300 epochs and used tied weights.
A validation set of five OCT volumes was used for param-
eter tuning. Due to limited computational resources, only a
small parameter selection was assessed. We used standard
values for ELU (α = 1), momentum (0.9), and mini-batch
(50). The initial learning rate was set to the highest value
that did not diverge (0.0001) for 150 epochs, and decreased
to 0.00001 for another 150 epochs. We experimented with
two different corruption values (0.5, 0.9) for fully connected
layers, and we found 0.5 to work better. We also conducted
experiments with shallower network architectures, which we
empirically found to work slightly worse. Since the One-
Class SVM hyper-parameter ν is bounded between 0 and
1, we varied ν between 0.01 and 0.9 for all methods: ν =
[0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. For the experi-
ments we used the Torch7 framework [31] and the One-Class
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SVM implementation of libsvm [32].

A. Evaluation of Anomaly Detection

The anomaly detection model was trained on the healthy
training set, with 277340 extracted pairs of image patches,
randomly selected from all 13867 B-Scans between the top and
bottom layer of the retina to avoid retrieving numerous ”back-
ground patches” without relevant content. While the influence
of ν was analyzed on late AMD validation volumes, the final
performance of the learned anomaly detection model was
evaluated on late AMD test. Each B-scan of all validation and
test volumes was expert annotated between the ILM and BM
layer, and dice, precision, recall, specificity and accuracy were
calculated for algorithmically detected anomalous regions with
regard to the manual annotations on volume level.

We compared the DDAEent model to the feature learning
approaches described in Section I-B: PCA embedding, and
a Deep Convolutional Autoencoder, denoted as DCAE. PCA
was chosen since it is a well-known and widely used technique
for feature learning. At the same time we were aiming at a
powerful representation of images, which is why DCAEs, that
are specifically designed for images, are a logical comparison
method [14]. To ensure a fair comparison for PCA, we trained
two models. In the first model, PCA256, the dimensionality
was chosen to match the feature dimension, z, of the proposed
model. For both scales, the first 128 principal components
were kept. In the second model, PCA0.95, for each scale, the
first components that described 95% of the variance were kept.
To retrieve the final feature representation, the feature vectors
ẏ and ÿ of both scales were concatenated to obtain z.

For DCAE, we use an encoder with a convolutional layer
(c) and 512 9×9 filters, followed by a 3×3 non-overlapping
max pooling (p) and two fully connected layers with 2048
and 512 units (512c9-3p-2048f-512f). The decoder was
composed of deconvolution (dc) and unpooling (up) layers to
approximately invert the output of the encoder and reproduce
the input (512f-2048f-3up-512dc9). All layers, except
pooling and unpooling, were followed by ELUs. This DCAE-
architecture replaced DDAE1 and DDAE2, while the ar-
chitecture of the third model(DDAE3) remained the same.
To ensure a fair comparison, the feature dimension of the
individual model outputs matched the dimensionality of the
proposed method.

B. Evaluation of Anomaly Categorization

We trained two clustering models on two different datasets:
late AMD categorization and early AMD categorization. We
extracted 354760 and 75460 pairs of image patches, respec-
tively. For both models, we varied the number of clusters, C,
between 2 and 30 and selected the clustering model with low-
est DB-index. In order to qualitatively evaluate the categories
found in the regions identified as anomalous, a segmentation
of the retina based on the identified anomalous categories
was computed on both datasets. Assignment of each pixel
was based on the learned centroids and the nearest-cluster-
center labeling (Section II-D). The used manual annotations
of the test set provided only a binary distinction into healthy

and anomalous, and did not describe all anomalies that were
visible in separate categories. Therefore, two clinical retina
experts conducted a qualitative evaluation of the results by
visually inspecting the results. While the number of clusters
was determined by the DB-index, category descriptions were
identified by the experts. Additionally, cosine distances be-
tween centroids of the two cluster models trained on late AMD
categorization and early AMD categorization were computed
in order to evaluate the correspondence between both models.

C. Evaluation of Volume Level Disease Classification

To evaluate if the identified categories can serve as disease
markers and encode valuable discriminative information, we
used the segmentation of the retina into C clusters, originating
from the clustering model learned on late AMD categorization,
to conduct multi-class classification on patient level. The
volume of each cluster served as feature vector for every
case. Since the clusters that were identified in early AMD
categorization could all be mapped to clusters identified in
late AMD categorization, which at the same time revealed
one additional cluster, we used only the latter more complete
anomaly category set as basis for these experiments. We
trained a random forest (RF) classifier [33] (#trees=64) with
these feature vectors using a set of randomly chosen late
AMD, early AMD and healthy cases (n=50 per class) from the
training and categorization sets. We then applied the classifier
to a separate test set not involved in anomaly detection,
categorization, or classifier training composed of late AMD test
(n=26) the remaining part of early AMD categorization (n=27)
and healthy test (n=33). We report feature importance values
obtained by random forest training, and the classification
accuracy on the test set.

For comparison, we trained a second RF model without
category information. Using the same evaluation setting as
described above, we used the binary segmentation of the retina
as features, originating from anomaly detection (Section II-C),
instead of the learned clusters.

We performed a second experiment to evaluate how the
method generalizes to a dataset of a different vendor. The
Bioptigen volumes were used for a second volume classifica-
tion experiment. Following the evaluation procedure in [23],
the dataset was randomly divided into bioptigen training (218
AMD, 65 control) and bioptigen test (50 AMD, 50 control),
and the RF was trained with #trees=100. Again, we trained
two models with and without category information, originating
from the clustering model learned on late AMD categorization.

IV. RESULTS

We report quantitative and qualitative results that illustrate
anomaly detection, visualize anomaly categorization outcome,
provide descriptions of clusters according to experts and
describe results of volume disease classification tasks using
the identified categories as marker candidates.

A. Anomaly Detection Results

For the detection and segmentation of anomalies, the pro-
posed method achieved a dice of 0.53 between annotated and
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TABLE I
DICE, PRECISION, RECALL (=SENSITIVITY), SPECIFICITY, AND ACCURACY FOR ANOMALOUS

REGIONS WITH MANUAL ANNOTATIONS, CALCULATED ON THE TEST SET. ADDITIONALLY, THE
CHOSEN ν VALUE FOR THE ONE-CLASS SVM IS REPORTED.

Algorithm (ν) Dice Precision Recall Specificity Accuracy

PCA256 (0.4) 0.47 (0.12) 0.36 (0.12) 0.74 (0.09) 0.46 (0.03) 0.55 (0.05)
PCA0.95 (0.2) 0.51 (0.12) 0.40 (0.13) 0.74 (0.08) 0.56 (0.04) 0.62 (0.04)
DCAE (0.2) 0.49 (0.13) 0.41 (0.13) 0.64 (0.14) 0.63 (0.07) 0.65 (0.05)
DDAEent (0.1) 0.53 (0.09) 0.47 (0.12) 0.63 (0.06) 0.71 (0.07) 0.69 (0.05) Fig. 4. precision-recall curve, calculated on the

validation set.

predicted anomalous regions, a precision of 0.47, and a recall
of 0.63, which means that 63% of all manually annotated
anomalies were also identified as anomalous by our model
(Table I). PCA256, PCA0.95 and DCAE achieved a lower
Dice (0.47, 0.51, and 0.49) compared to our method. Using a
paired Wilcoxon signed-rank test, a significant difference could
be shown for PCA256 (p=0.0004) and DCAE (p=0.02), but
not for PCA0.95 (p=0.11).

To enable an objective qualitative evaluation, the volumes
which are visualized in Fig. 3 were selected according to
highest and lowest dice of DDAEent. An additional visual
comparison of the segmentation results revealed that the shape
of identified anomalous regions of the proposed method,
DDAEent, reflected the manual annotations better than all
comparison methods.

The validation performance for all examined ν values and
all methods is reported in Fig. 4 and Fig. 6. At a recall level
around 0.78, where the precision-recall curve (Fig. 4) seems
to reveal comparable performance of the examined methods,
DDAEent achieves a precision of 0.42, outperforming all
other approaches. At the same time, when comparing the
curves, it can be clearly observed that both DCAE and
DDAEent produced more stable results in comparison with
the PCA methods. In particular, Fig. 6 shows that preci-
sion/recall decreased/increased continuously as increased for
DCAE and DDAEent, while both PCA methods exhibited
an inconsistent behavior. In accordance with these quanti-
tative outcome, Fig. 5 illustrates segmentation results for
DDAEent and PCA0.95. Note that the embedding itself did
not change with varying ν values. This inconsistency of both
PCA methods makes an intuitive interpretation and adaption
of ν difficult, though it may be important for specific tasks to
control the precision-recall trade off.

B. Anomaly Categorization Results

Despite the fact that the anomaly detection performance
left room for improvement in general, the detected anomaly
candidates could be clustered into stable categories. The lowest
DB-index was found for C = 10 on late AMD categorization
and C = 9 on early AMD categorization, as indicated in
Fig. 7(a). This was a plausible outcome, since OCT volumes
with late AMD exhibit more obvious visual variation than
early AMD volumes.

The cosine distance between cluster centroids is visualized
in Fig. 7(b), where the columns were re-arranged for better
interpretability. The nearest-neighbors of cluster centroids are
illustrated in Fig. 7(c), both for late AMD and early AMD

clustering results. As can be seen both in 7(b) and (c), all
clusters of early AMD clustering could be linked to specific
clusters in late AMD clustering. This was a plausible outcome,
since all variation that is present in early AMD, is also present
in late AMD cases. Exemplary category descriptions identified
by experts are denoted in Fig. 7(d), where ”Upper boundary
of photoreceptor layer with pathologic surrounding” (a4, b4),
”Photoreceptor layer with pathologic surrounding” (a5, b5),
and ”vitreomacular interface with pathologic surrounding” (a9,
b9) could be identified in both clusterings.

In contrast, late AMD clustering showed one additional
cluster ”a10” which was identified as ”Exudative fluid” (e.g.
intraretinal or subretinal fluid) segmentation by the clinical
retina experts, and had no clear relation to a specific early
AMD cluster. This claim of missing relation was supported
by qualitative evaluation as well as by the calculated cosine
distance between cluster centroids, which showed relatively
low values (large distances) for ”a10” to all early AMD
clusters, as illustrated in Fig. 7(b), bottom row. Clustering
results are shown in Fig. 7 (e) on late AMD test B-scans, where
it can be seen that cluster ”a10” showed substantial overlap
with areas of fluid. Since fluid like intra- or sub-retinal fluid
occurs only in late AMD, this was a reasonable outcome and
indicated that also disease specific clusters had been learned.

C. Volume Level Disease Classification Results

We obtained an accuracy of 81.40% on the three-class
classification task, using the volume of each cluster (corre-
sponding to late AMD clustering) as features. The confusion
matrix (Fig. 8(a)) shows that the classifier could successfully
distinguish between late and early AMD cases. It is a more
difficult task to separate early AMD and healthy volumes2. The
feature importance, calculated during random forest training,
is given in Fig. 8(b). It visualizes how each feature contributes
to the prediction of a class in the form of the mean decrease
of accuracy (MDA) for individual feature perturbations. We
provide information about whether variables are positive or
negative predictors by comparing their average value within
class examples to the average value for out-of-class examples
as the sign. Results identify ”a7” as the most important
feature of the calculated random forest model. It is a strong
negative predictor for healthy, while a strong positive predictor
for late AMD. The comparison experiment without category
information resulted in lower accuracy of 60.47% on the same
classification task.

2Result examples can be found in the supplementary material.
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Fig. 5. Compared to the PCA methods, DDAEent produced more stable results when varying ν.
This finding was also supported by the segmentation results, illustrated for five consecutive ν values
of DDAEent and PCA0.95 on an example B-Scan (anomaly regions are highlighted in blue).

Fig. 6. Validation values of precision (dashed)
and recall (solid) are plotted against ν.

On the bioptigen test set, we achieved an area under the
ROC curve (AUC) of 0.944 (Figure 9) and 0.768 for the RF
models using category information or not, respectively. The
clear performance gaps on both classification tasks supports
the claim that the learned anomaly categories encode clinically
meaningful information. Furthermore, the result on bioptigen
test indicates that the learned feature representation and the
categories, respectively, reflect morphological properties of the
retina, and not OCT vendor specific characteristics.

V. DISCUSSION

We propose a method to detect and categorize anomalous
regions in OCT volumes of the retina, and subsequently use
these anomalies as marker candidates. The model is trained on
healthy imaging data and detects anomalies in new volumes
without constraints to a priori definitions. Categorization of
anomalies revealed clusters of frequently occurring patterns,
where a part of these categories could be mapped to clinically
meaningful entities in the imaging data in a post hoc qual-
itative assessment of clusters by experts. Finally, results in
disease classification tasks indicate that the identified marker
candidates encode valuable discriminative information.

a) Three insights: From evaluation results we gain three
primary insights. First, the proposed approach relying on
a multi-scale deep denoising auto encoder architecture to
represent image information shows comparable or superior
performance to alternatives such as PCA or DCAE. At the
same time, the embedding of DDAEent allows to control the
precision-recall trade off in an intuitive way, as opposed to
PCA. This indicates that the representation is important for
successful detection of subtle alterations in the imaging data
and stable training of the one-class SVM.

Second, we can identify stable categories, that are replicable
across data sets. Clustering reveals entities that are present in
late- and early AMD, and a class of entities that is only present
in late AMD. It demonstrates that purely data driven learning
can reveal meaningful structure in the data, that corresponds to
disease processes. Here, it reflects the emergence of exudative
liquid that is characteristic for late AMD.

Third, the identified anomaly categories are valid marker
candidates, that show predictive value, when used for volume
level classification.

b) Relationship to prior work: While we achieved an
AUC of 0.944 on the binary classification task, prior work
reported an AUC of 0.984 [23] and 0.992 [21] on the Bioptigen
dataset, where the latter used a different evaluation process
(leave-one-out cross-validation on all cases). In [23] features

are extracted at interest points which are located using man-
ually defined constraints, while Farsiu et al. [21] used semi-
automatically segmented retinal layers as features. In contrast
to our study, both works use prior knowledge about the disease
to create features specifically designed for this classification
task. Additionally, our features are generated by a model
which was trained on cases from a different OCT device
(Spectralis vs. Bioptigen), which adds additional complexity
to the task. Viewed in this light, our result indicates that
the learned anomaly categories encode valuable discriminative
information.

c) Identification of novel marker candidates: There is
strong interest in the identification of valid biomarkers in
AMD, since the already known biomarkers (e.g., retinal thick-
ness, macular fluid) do not explain the entire spectrum of
the disease and in particular the individual level of vision
loss [6]. The proposed method contributes a path to identify
novel marker candidates. It found categories that were known
(e.g. photoreceptor layer with pathologic surrounding, cluster
a5/b5), as well as potential new biomarker categories such
as ”a7”, which could not clearly be linked to a particular
known pathology by the clinical retina experts and at the
same time showed a high feature importance regarding dis-
ease classification. The ultimate aim is to use unsupervised
automated analysis to identify disease marker candidates in
a first step, as done in this study, and to define a precise
description of characteristics of those candidates in a second
step, transforming them from candidates to effective markers
applicable in clinical practice. The latter is subject of future
work, for instance by correlating marker candidates with visual
function. Results showing that the identified categories can
classify disease are the strongest indication that unsuper-
vised learning as proposed in this paper, can identify novel
marker candidates and potentially contribute to understanding
mechanisms governing disease course and treatment effect. If
accuracy of the method can be improved further, in addition
to marker identification, future work could also use anomaly
detection to quickly visualize anomalies in OCT volumes,
helping to efficiently evaluate large datasets, or in a screening
setting.

d) Limitations: There are some limitations that have
to be mentioned. First, the performance of the pixel-wise
anomaly detection (dice=0.53) left room for improvement.
While a recall of 0.63 indicates that manually annotated re-
gions were still missed in this step, the relatively low precision
of 0.47 may result from two sources: First, normal appearance
dissimilar to the range represented in the training set, due to
not having enough training data. The second possible source
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Fig. 7. Anomaly categorization: The calculated values of the DB-Index are plotted in (a). The cosine distance between cluster centroids is visualized in
(b) and is bounded between 0 and 1, due to rescaling of features into positive domain. The nearest-neighbors of cluster centroids are illustrated in (c). The
upper row shows the 32-by-32 patches, while the second row illustrates the 124-by-32 patches. Each cluster is indicated by a separate color. Some exemplary
cluster descriptions that were identified by experts are denoted in (d). Clustering results of late AMD and early AMD clustering are shown in (e) on example
B-scans, where identified anomalous regions were segmented into 10 and 9 categories, respectively. In accordance with former visualizations, normal regions
are highlighted in red.

may be anomalies that have not yet been categorized, and
are potential new candidates for markers. The interpretation
of identified marker candidates remains challenging. They do
not correspond to known categories, and thus no ground-
truth exists for their direct evaluation. Instead we use expert
description and classification experiments to verify and in-
vestigate their nature. Age information for individual patients
was not available in this study. However, the datasets were
composed of patients from multiple clinical studies, for which
the average study age was available. The computed mean ages

by weighting the mean ages of individual studies can be found
in the supplementary material. In principle, a younger age of
the healthy group could present a possible confounder in the
biomarker identification and evaluation process. However, our
data comes from clinical trials with a relatively high mean
age (65.9 or higher). Additionally, signs of normal aging in
OCT (i.e. mainly retinal pigment epithelium thinning [34])
are less pronounced than AMD related changes. Therefore,
we expect that in this study, our method primarily picks up
features associated with disease. A further limitation is that
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Fig. 8. Three-Class Classification: (a) Confusion matrix of the test set. (b) Identified anomaly categories as
markers of disease. The first three rows show the class-specific MDA, where the sign encodes the feature-trend
for that specific class (positive indicates high within class and low outside class values and vice versa). The
fourth row contains the MDA over all classes, and the last row shows the mean decrease in Gini index.

Fig. 9. ROC curve of the Bioptigen
binary classification task.

contralateral OCTs of patients with RVO/AMD in the other
eye were used as healthy training data. In order to minimize the
influence of this potential bias, retina experts conducted careful
selection of healthy OCTs within this data. There is a lack of
scientific consensus regarding where normal aging of the retina
stops and age-related disease starts. To address this limitation
and to account for age-related changes that normally do not
result in visual impairment, we have specifically included the
mildest category of age-related changes which include small
hard drusen (< 63μm) [8]. Another limitation is the restricted
informative value of feature importance values in the case
of low numbers of examples. A substantially higher number
of decision trees is necessary to obtain stable feature scoring
results compared to obtaining good classification accuracy. A
further limitation is that the evaluation was conducted with
AMD cases only, but, since the applicability of the proposed
method is not limited to a specific anomaly, an extension to
other diseases should be straightforward.

VI. CONCLUSION

We propose a method to segment anomalies in OCT
volumes and categorize these findings into disease marker
candidates. The detection of new anomalies, rather than the
automation of expert annotation of known anomalies, is a
critical shift in medical image analysis and particularly rel-
evant in retinal imaging. In this context, we introduced a
novel way to identify biomarker candidates, where results on
both classification tasks indicate that valuable discriminative
information is encoded in the newly identified categories.
Future work is needed to transform these categories from
candidates to actual markers applicable in clinical practice.

REFERENCES

[1] R. Mayeux, “Biomarkers: potential uses and limitations,” NeuroRx,
vol. 1, no. 2, pp. 182–188, 2004.

[2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson,
W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito et al.,
“Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–
1181, 1991.

[3] J. Fujimoto and E. Swanson, “The development, commercialization, and
impact of optical coherence tomographyhistory of optical coherence
tomography,” Investigative Ophthalmology and Visual Science, vol. 57,
no. 9, 2016.

[4] W. L. Wong, X. Su, X. Li, C. M. G. Cheung, R. Klein, C.-Y. Cheng, and
T. Y. Wong, “Global prevalence of age-related macular degeneration and
disease burden projection for 2020 and 2040: a systematic review and
meta-analysis,” The Lancet Global Health, vol. 2, no. 2, pp. e106–e116,
2014.

[5] S. M. Waldstein, A.-M. Philip, R. Leitner, C. Simader, G. Langs,
B. S. Gerendas, and U. Schmidt-Erfurth, “Correlation of 3-dimensionally
quantified intraretinal and subretinal fluid with visual acuity in neovas-
cular age-related macular degeneration,” JAMA ophthalmology, vol. 134,
no. 2, pp. 182–190, 2016.

[6] U. Schmidt-Erfurth and S. M. Waldstein, “A paradigm shift in imaging
biomarkers in neovascular age-related macular degeneration,” Progress
in Retinal and Eye Research, vol. 50, pp. 1–24, 2016.

[7] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review
of novelty detection,” Signal Processing, vol. 99, pp. 215–249, 2014.

[8] F. L. Ferris, C. Wilkinson, A. Bird, U. Chakravarthy, E. Chew, K. Csaky,
and S. R. Sadda, “Clinical classification of age-related macular degen-
eration,” Ophthalmology, vol. 120, no. 4, pp. 844–851, 2013.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[10] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in Neural
Information Processing Systems, 2015, pp. 91–99.

[11] T. Schlegl, S. M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, and
G. Langs, “Predicting semantic descriptions from medical images with
convolutional neural networks,” in Information Processing in Medical
Imaging. Springer, 2015, pp. 437–448.

[12] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual repre-
sentation learning by context prediction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
1422–1430.

[13] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Dis-
criminative unsupervised feature learning with convolutional neural
networks,” in Advances in Neural Information Processing Systems, 2014,
pp. 766–774.

[14] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun, “Stacked what-where
auto-encoders,” arXiv preprint arXiv:1506.02351, 2016.

[15] Y. Zhou, D. Arpit, I. Nwogu, and V. Govindaraju, “Is joint training better
for deep auto-encoders,” arXiv preprint, arXiv: 1405.1380, 2015.
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[25] M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and
M. Sonka, “Automated 3-d intraretinal layer segmentation of macular
spectral-domain optical coherence tomography images,” IEEE Transac-
tions on Medical Imaging, vol. 28, no. 9, pp. 1436–1447, 2009.

[26] M. Holzer and R. Donner, “Over-segmentation of 3d medical image
volumes based on monogenic cues,” in Proceedings of the 19th CVWW,
2014, pp. 35–42.

[27] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[28] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[29] K. Hornik, I. Feinerer, M. Kober, and C. Buchta, “Spherical k-means
clustering,” Journal of Statistical Software, vol. 50, no. 10, pp. 1–22,
2012.

[30] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation
techniques,” Journal of Intelligent Information Systems, vol. 17, no. 2,
pp. 107–145, 2001.

[31] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[32] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[33] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[34] F. Ko, P. J. Foster, N. G. Strouthidis, Y. Shweikh, Q. Yang, C. A.
Reisman, Z. A. Muthy, U. Chakravarthy, A. J. Lotery, P. A. Keane et al.,
“Associations with retinal pigment epithelium thickness measures in a
large cohort: results from the uk biobank,” Ophthalmology, vol. 124,
no. 1, pp. 105–117, 2017.



CHAPTER6
Epistemic Uncertainty of Anatomy

Segmentation for Anomaly Detection
in Retinal OCT

“Regardless of your faith,

you can never escape uncertainty.”

– Shannon L. Alder

In this Chapter we exploit the potential of epistemic uncertainty, together with the concept
of encoding anatomical knowledge into the model, for anomaly detection. Based on

the assumption that epistemic uncertainty is high for structures that are not present in the
training set, we train a segmentation model solely on healthy samples and exploit Bayesian
deep learning (Section 3.2.4) to detect anomalous regions deviating from the normal training
distribution in new images.

First, we use an existing automated method to segment normal anatomical structures in
a healthy population, taking advantage of the fact that traditional segmentation methods are
expected to perform accurately due to the well-de�ned properties of normal cases. Secondly,
these weak labels of normal samples are used to train a U-Net (Section 3.2.2) on the segmen-
tation task. On one hand, this means that the presented approach does not involve manual
labels at any stage. On the other hand, this injects knowledge about normal anatomical
variability into the model, implicitly incorporating information for detecting anomalies. At
test time, epistemic uncertainty estimates (retrieved by using MC dropout sampling) are used
to detect anomalous regions. Finally, a novel post-processing technique based on majority-
ray-casting is applied in order to obtain smooth segmentations of the anomalies. We conduct
an extensive evaluation of the proposed method on SD-OCT volumes from both healthy and
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diseased patients, including cases with late wet age-related macular degeneration (AMD), dry
geographic atrophy (GA), diabetic macular edema (DME) and retinal vein occlusion (RVO).

�e presented manuscript ”Epistemic Uncertainty of Anatomy Segmentation for Anomaly
Detection in Retinal OCT” has been submi�ed to the journal ”Transactions on Medical Imaging”
and is currently under review.
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Epistemic Uncertainty of Anatomy Segmentation
for Anomaly Detection in Retinal OCT
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Sophie Klimscha, Georg Langs*, and Ursula Schmidt-Erfurth

Abstract—Diagnosis and treatment guidance are aided by
detecting relevant biomarkers in medical images. Although su-
pervised deep learning can perform accurate segmentation of
pathological areas, it is limited by requiring a-priori definitions
of these regions, large-scale annotations, and a representative
patient cohort in the training set. In contrast, anomaly detection
is not limited to specific definitions of pathologies and allows
for training on healthy samples without annotation. Anomalous
regions can then serve as candidates for biomarker discovery.
Knowledge about normal anatomical structure brings implicit
information for detecting anomalies. We propose to exploit this
property using bayesian deep learning, based on the assump-
tion that epistemic uncertainties will correlate with anatomical
deviations from a normal training set. A Bayesian U-Net is
trained on a well-defined healthy environment using weak labels
of healthy anatomy produced by existing methods. At test time,
we capture epistemic uncertainty estimates of our model using
Monte Carlo dropout. A novel postprocessing technique is then
applied on these estimates to retrieve smooth segmentations of the
anomalies. We experimentally validated this approach in retinal
optical coherence tomography (OCT) images, using weak labels
of retinal layers. Our method achieved a Dice index of 0.789 in an
independent anomaly test set of age-related macular degeneration
(AMD) cases. The resulting segmentations allowed very high
accuracy for separating healthy and diseased cases with late wet
AMD, dry geographic atrophy (GA), diabetic macular edema
(DME) and retinal vein occlusion (RVO). Finally, we qualitatively
observed that our approach can also detect other deviations in
normal scans such as cut edge artifacts.

Index Terms—weakly supervised learning, anomaly detection,
biomarker discovery, optical coherence tomography, epistemic
uncertainty.
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Fig. 1. Anomaly detection in retinal OCT. (a) Healthy retina. (b) Diseased
subject (manual annotation of anomaly in green, prediction of anomaly by
our model in red).

I. INTRODUCTION

Biomarker detection in medical imaging data plays a crit-
ical role in the context of disease diagnosis and treatment
planning [1]. However, performing this task manually is
extremely expensive and time consuming. Moreover, as it
requires experts in the field to know every possible visual
appearance of the regions of interest, results may suffer from
intra- and inter-grader variability [2]. Automated methods can
partially address these issues by exploiting the potential of
deep learning [3]. Supervised learning approaches are trained
to detect well-known, pre-defined biomarker categories such
as lesions or pathological changes in organs and tissues [4]–
[7]. In retinal OCT imaging, supervised methods have been
extensively used [8], e.g. for segmentation of fluid [9], [10],
drusen [11], hyperreflective material [12] or photoreceptor
disruptions [13]. However, these methods require large-scale
annotated data sets, which can be costly or even unfeasible
to obtain in some clinical scenarios. Moreover, their outputs
are limited to the pre-defined set of marker categories, and are
unable to discover novel biomarkers different from those used
for training [14].

Anomaly detection methods offer an interesting alternative
to supervised learning in this domain, as they are not limited
in their application to a specific disease or marker category.
Instead, these approaches leverage the knowledge extracted
from healthy data during training, omitting the need of a
representative patient cohort with an appropriate amount and
variations of pathologies [15], [16]. Capturing all possible
disease related appearances or rare disease manifestations is
costly or even unfeasible. In general, anomaly detection can
be defined as a two-step process in which we first learn
a model of normal appearance, and then we apply it to
detect deviations from this normal data (anomalies) during
test time [14], [15], [17]. Therefore, instead of searching in
the entire image space, these segmented anomalies can be
explored by clinicians to identify features that might result in
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novel biomarkers, allowing a more efficient discovery process.
Furthermore, identifying anomalous areas can be also helpful
to efficiently screen for diseased cases in large patient cohorts.

Bayesian deep learning has emerged as an active field of
research that aims to develop efficient tools for quantifying un-
certainties [18]–[20]. In general, uncertainties can be classified
into two main categories: aleatoric and epistemic. Aleatoric
uncertainty captures the vagueness inherent in the input, while
epistemic uncertainty refers to the model incertitude and can
be reduced by incorporating additional data into the training
process [20]. Both aleatoric and epistemic uncertainty have
previously been used for semantic segmentation [19], [20]. In
this context it has been shown that aleatoric uncertainty does
not increase for examples different from those in the training
set, while epistemic uncertainty does [20]. Hence, the latter is
more suitable for detecting changes (or anomalies) from the
normal samples. Furthermore, disease classification methods
based on deep learning were observed to be benefited by the
usage of epistemic uncertainties [21].

In this paper, we introduce a novel approach for anomaly
detection, exploiting segmentation models of normal anatomy
and their epistemic uncertainty while segmenting new images.
Our method is based on the assumption that these uncertainties
will correlate with deviations from a normal appearance.
We learn the regularities in the anatomy of healthy data,
using weak labels. In this work we use the term ”weak
supervision” to indicate that we trained our model using labels
automatically generated by a surrogate segmentation method
instead of a human reader. We exploit this characteristic as
traditional algorithms–even if they are not based on machine
learning–are expected to perform accurately due to the well-
defined properties of normal cases. Therefore, our approach
does not involve manual labels at any stage. This setting allows
to produce more training data and thereby to harvest more
appearance variability.

We experimentally evaluate our approach in the context of
anomaly detection in retinal optical coherence tomography
(OCT) scans (Fig. 1, Section I-A). We train a Bayesian U-
Net [22], [23] on a set of healthy images using weak labels of
the retinal layers, provided by a standard graph-based method
for layer segmentation [24]. At test time, we capture the
epistemic uncertainty estimates from our network by means
of Monte Carlo (MC) dropout [18], [19]. This output is
postprocessed using a novel majority-ray-casting technique in
order to retrieve compact, blob-shaped smooth segmentations
of the anomalies. On a separate test set of patients with age-
related macular degeneration (AMD), our method achieves
a Dice index of 0.789, outperforming previously published
work by a large margin. Furthermore, the performance of the
proposed method is evaluated in a volume-level classification
experiment, using only the amount of anomalous area as (dis-
criminative) feature. By individually comparing healthy cases
vs. diabetic macular edema (DME), retinal vein occlusion
(RVO), dry geographic atrophy (GA) and late wet AMD,
we observe that even this simple predictor allows to achieve
almost perfect separation.

A. Retinal OCT imaging

OCT is a non-invasive volumetric imaging technique that
provides high resolution images of the retina and is currently
one of the most important diagnostic modalities in ophthal-
mology [25]. A 3D OCT volume is composed of several
2D cross-sectional slices–or B-scans–, which are analyzed by
physicians to determine treatments, diagnosis and other clini-
cal decisions [25]. Age-related macular degeneration (AMD)
is one of the leading causes of blindness in the world [26].
Detectable AMD-related changes in OCTs are, among others,
drusen, intra- and subretinal fluid, pigment epithelial detach-
ment (PED) and photoreceptor loss [8]. Besides neovascular
AMD, which is defined by the occurrence of fluid, geographic
atrophy (GA) is the second form of late AMD, characterized
by the death of retinal pigment epithelium (RPE) cells, pho-
toreceptors and/or choriocapillaris. Other retinal diseases such
as retinal vein occlusion (RVO) [27] and diabetic macular
edema (DME) [28] are characterized by the occurrence of
intraretinal/subretinal fluid. Presence or changes in some of
these features have been shown to correlate with visual func-
tion or disease progression [29]. Predictive capability however
remains to be limited and underlying pathogenetic mechanisms
are not yet fully understood [30], meaning that there might be
other unknown structures or patterns that are still needed to
be discovered.

We propose to apply our uncertainty based approach to
automatically segment anomalies in retinal OCT scans. In
this domain, normal is defined as the absence of pathologi-
cal changes beyond age-related alterations. According to the
Beckman Initiative Classification [31], we allowed drusen be-
low 63 μm in size as only visible alteration, as they normally
do not result in visual impairment. A set of healthy retinas
and corresponding weak labels obtained using [24] are used
to train a Bayesian deep learning model for segmenting the
retinal layers. Pixel-wise epistemic uncertainty estimates are
applied at test time to identify anomalous regions in new given
samples. While pathologies such as subretinal fluid are known
to alter the appearance of the retina, some other are strictly
related with the layers (e.g. the disorganization of the retinal
inner layers, or DRIL) [23]. Therefore, using retinal layer
information is an appropriate way of incorporating anatomical
knowledge into the model. At the same time, no labels of the
target class (i.e. anomalies) are needed for training.

B. Related Work

Biomarker discovery and analysis have benefited by the
incorporation of deep learning [32]. Non data-driven ap-
proaches require hand-crafting techniques to capture a specific
biomarker, and then assess its statistical power, e.g. by means
of linear discriminant analysis [33]. Alternatively, supervised
deep learning avoids biases due to manual design of features
by learning them from data. These techniques have been
extensively used to identify pre-defined pathological markers
such as disease lesions [4], [7], [8], [34]. Their main drawback
is that they require a training set with manual annotations of
the region of interest. Thus, the markers have to be known
in advance–restricting the possibility of using these models
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Fig. 2. Overview of the proposed method. A Bayesian U-Net is trained on normal B-scans, using weak labels of the retinal layers generated using the Garvin
et al. [24] segmentation method. The retinal layers are indicated on the right hand side. Given an unseen B-scan, MC dropout sampling is used to retrieve
epistemic uncertainty maps, which are subsequently post-processed using majority-ray-casting to obtain the final anomaly segmentations.

for biomarker discovery–and the training set has to include
enough representative examples of the marker appearances.
Alternatively, some authors propose to predict pre-defined clin-
ical parameters using image-based regression techniques [32],
[35]. These methods assume that the networks will learn to
capture features in the images that are correlated with relevant
target values. Appropriate visualization techniques are needed
to understand the properties of the model and to identify
the features taken into account for prediction [32], [35]. The
regression target needs to be pre-defined, and it can be either a
functional parameter [32] or a diagnosis [35]. Furthermore, a
representative sample of diseased subjects has to be included in
the training set if the target parameters are related to a specific
condition. Moreover, due to the complexity of the prediction
task, a larger number of training samples is required compared
to supervised segmentation approaches.

Anomaly detection, on the contrary, identifies pathological
areas that are implicitly defined by healthy data: normal
appearance is first learned from this data, and anomalies
are obtained in new data by detecting the difference to this
representation. This overcomes the need of a sufficiently
representative cohort of diseased patients, to select features
with stable predictive value for a given target. Instead, first
anomalies are detected based on a model trained on large-
scale healthy data, and highlighted in the images as blob-
shaped segmentations. In a second step, these candidates–
typically only a fraction of the overall data–can be mined more
efficiently for discovering new biomarkers and/or predictors.
These techniques can be applied as a first step in discovering
novel risk factors of diseases, extending the vocabulary of
known biomarkers, and therefore our knowledge about the
underlying pathogenesis of diseases [14], [17], [36].

Multiple techniques have been proposed in the past for
automated anomaly detection in OCT images [14], [17], [37],
[38]. Shape models were used in [37] to perform drusen
detection. In [38], the appearance of normal OCT B-scans was
modeled with a Gaussian Mixture Model (GMM), recognizing
anomalous B-Scans as outliers. Entire OCT volumes were
classified as normal or anomalous, based on the number
of outliers. Deep unsupervised anomaly detection has been
recently presented in [14], [17], both relying on a repre-
sentation learned at patch-level. Schlegl et al. [17] used a
Generative Adversarial Network (GAN) to learn a manifold
of normal anatomical variability, and anomalies were detected
as deviations from it. A multi-scale autoencoder approach
combined with a one-class support vector machine (SVM)
was presented in [14] to segment anomalies and to identify
disease clusters subsequently. None of these anomaly detection
approaches incorporate the use of uncertainty.

To the best of our knowledge, uncertainties were not used
for anomaly detection before. In particular, Nair et al. [34]
used Bayesian supervised learning to segment multiple sclero-
sis lesions in MRI. Sedai et al. [39] applied a similar method
for layer segmentation in healthy OCT scans. In both works,
aleatoric uncertainty was used for training. In [34], epistemic
uncertainty was applied to refine the segmentations, while
in [39] the epistemic uncertainty was provided as qualitative
feedback to users. Monte Carlo sampling with dropout was
used in [36] to average multiple outputs from an autoencoder
trained in healthy data. Anomalies were detected as differences
between the input and the reconstructed output. In this paper
we aim for a different task compared to these previous ap-
proaches: we use the epistemic uncertainty of a model trained
on healthy subjects to discover anomalies in new data.
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C. Contributions

We propose a novel approach for anomaly detection based
on epistemic uncertainty estimates from a Bayesian U-Net,
trained for segmenting the anatomy of healthy subjects. To
the best of our knowledge, this is the first method to pose the
segmentation of anomalies in this way. In addition, our model
is trained on weak labels instead of manual annotations, which
allows to increase the training data without major efforts. We
evaluate our model in the context of anomaly detection in
retinal OCT scans. We introduce a heuristical postprocessing
technique, namely majority-ray-casting, to ensure compact-
shape consistency in the final anomaly segmentations. Our
approach is able to obtain a clear performance improvement
compared to previous state-of-the-art in anomaly detection in
OCTs [14]. This manifests in a Dice of 0.789 on the anomaly
test set regarding the pixel-wise segmentation task, while
achieving almost perfect volume-level separation of healthy
and diseased volumes with late wet AMD, dry GA, DME and
RVO, solely based on the area of detected anomalies. Finally,
we also qualitatively observed high uncertainty estimates in
regions with other deviations such as imaging artifacts in
normal subjects.

II. METHODS

An overview of the proposed approach is illustrated in
Fig. 2. First, we train a Bayesian U-Net model on normal
cases to segment retinal layers, using weak labels automat-
ically generated with a graph-based segmentation approach.
Secondly, this model is applied together with Monte Carlo
dropout [18], [19] to retrieve pixel-level epistemic uncertainty
estimates. Finally, we introduce a simple post-processing step,
majority-ray-casting, to transform the uncertainty maps into
compact segmentations of anomalies. This technique closes
the gap between the shape of layers and anomalies based on
the assumption that anomalies in OCT are compact and not
layered.

Section II-A describes the general idea of training a seg-
mentation model from a healthy population using weak labels.
Section II-B focuses on the application of the epistemic
uncertainty estimates of this model for anomaly detection. The
domain-specific pipeline for applying the anomaly detection
approach in retinal OCT scans is presented in Section II-C

A. Training on Healthy Population

Let X ∈ Ra×b be a set of normal images with a× b pixels
size, and Y ∈ Ya×b the set of corresponding weak, target label
maps, with Y = {1, ...,K} the set of all possible classes. A
segmentation model aims at finding the function fW : X → Y
by optimizing its set of weights W . In this study, we model fW
using a multiclass U-Net [22]. This widely used segmentation
architecture is composed of an encoding and a decoding part
with skip-connections: the encoder contracts the resolution of
the input image and captures the context and relevant features
on it, while the decoder performs up-sampling operations to
enable precise localization of the target class and restores the
input resolution. The skip-connections, on the other hand, al-
low to better reconstruct the final segmentation by transferring

feature maps from one encoding block to its counterpart in
the decoder. Our instance of the U-Net (Fig. 3) comprises
five levels of depth, with 64, 128, 256, 512 and 1024 output
channels each. Dropout is applied after each convolutional
block, which consists of two 3×3 convolutions, each followed
by batch-normalization [40] and a rectified linear unit (ReLU).
2×2 max-pooling and nearest-neighbor interpolation are used
for downsampling and upsampling, respectively. The network
is trained with the cross entropy loss objective function.

B. Exploiting Epistemic Uncertainty for Anomaly Detection

Epistemic uncertainty was observed to increase when esti-
mated on image samples whose appearance differ significantly
from those on the training data [20]. We propose to exploit
this characteristic to identify and segment anomalies in unseen
scans.

Formally, Bayesian deep learning aims to find the posterior
distribution over the weights of the network p(W |X,Y ), in
order to derive epistemic uncertainty. In general, retrieving
the actual true underlying distribution is computationally in-
tractable, so it needs to be approximated. Gal et al. [18]
proposed to approximate the posterior with the variational
distribution q(W ), i.e. by using dropout also at test time
to retrieve MC samples. This is theoretically equivalent to
modelling q as a Bernoulli distribution with probability p
equal to the dropout rate. It has been shown in [18] that
the Kullback-Leibler divergence between the approximate and
posterior distribution:

KL(q(W )||p(W |X,Y )) (1)

is minimized by optimizing the cross-entropy loss during
training. Hence, training the network with gradient descent and
dropout not only prevents over-fitting but also encourages the
network to learn a weight distribution that properly explains
the training data.

At test time, given an unseen image x (e.g. a B-scan), the
pixel-wise epistemic uncertainty is estimated as follows. First,
n predictions y(i), i ∈ 1, . . . , n are retrieved by applying the
model fW∼q(W ) on x. The pixel-wise variance σ2 is then
computed for each class k ∈ Y by:

σ2
k(p) =

1

n

n∑

i

(
y
(i)
k (p)− μk(p)

)2

(2)

where p is a pixel coordinate and μk is the average of the
n predictions for the k-th class. The final uncertainty map u
is obtained by averaging all σ2

k estimates over the K class-
specific variances in a pixel-wise manner:

u(p) =
1

K

K∑

k

σ2
k(p). (3)

C. Application of anomaly detection in retinal OCT scans

We apply the uncertainty-based anomaly detection approach
to retinal OCT scans. The training set consists of pairs (X,Y )
composed of a healthy OCT B-scan X and its associated
weak labelling map Y of the retinal layers. Y is pre-computed
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Fig. 3. Overview of the network architecture. Each convolutional block has the following structure: 3-by-3 convolution + batch-normalization + ReLU +
3-by-3 convolution + batch-normalization + ReLU. All convolutional layers use a stride of 1 and zero padding. A combination of nearest neighbor upsampling
and a convolutional layer is applied instead of transposed convolutions.

Fig. 4. Majority-ray-casting postprocessing technique. Red arrows indicate
ray hits with a binary (white, =1) region, while the gray arrow indicates a
non-hit.

using the graph-based surface segmentation algorithm de-
scribed in [24]. Such a method has proven to be effective
in normal subjects and is widely applied in ophthalmological
studies [41], [42]. The set Y of labels comprises K = 11
classes corresponding to background and 10 retinal layers
(Figure 2): nerve fiber layer (NFL); ganglion cell layer (GCL);
inner plexiform layer (IPL); inner nuclear layer (INL); outer
plexiform layer (OPL); outer nuclear layer (ONL); inner
segment layer (ISL); inner segment - outer segment (IS-OS)
junction; outer segment layer (OSL) and the retinal pigmented
epithelium (RPE).

We use these weak labels to train the Bayesian multiclass
U-Net described in Section II-A. The neural network provides
both a segmentation map and an uncertainty estimate. We only
use the latter at test time, as our purpose is not to accurately
identify the retinal layers but to segment retinal abnormalities.

A first estimate of the anomalous areas is obtained by
thresholding u with a threshold t. To eliminate spurious pre-
dictions, every connected component with an area smaller than
s pixels is removed, resulting in a binary map B. The most
straightforward way to highlight anomalies in an input B-scan
is by providing compact, blob-shaped smooth segmentations
surrounding the abnormal areas. As can be seen Fig. 4, B is
not smooth enough to fit that shape.

We introduce a simple but effective technique, majority-
ray-casting, that iteratively postprocesses the binary map B

and results in a more shape consistent anomaly segmentation.
This approach assumes that the retina is approximately hori-
zontally orientated in the B-scan, which is usually the case. A
schematic representation of the method is provided in Fig. 4.
On an iteration j, in a first step four rays are sent to each of the
cardinal coordinates (left, right, top and bottom) from every
pixel p that satisfies Bp = 0. In other words, each black pixel
in Fig. 4 is used once as reference point to cast the four rays.
Each ray that ”hits” a pixel with value 1 before reaching the
border of B increases a pixel-wise ray-casting vote V (Bp) by
1. Hence, the maximum voting value of V (Bp) for each pixel
p can be 4. In a second step, all pixels with votes greater than
or equal to a hyper-parameter v(j) are then set to 1, resulting
in a new binary map B(j). Formally, this can be written as:

B(j)
p =

⎧
⎪⎨
⎪⎩

1 if Bp = 1

1 if V (Bp) ≥ v(j)

0 if V (Bp) < v(j).

(4)

Notice that this process can be iteratively repeated using B(j)

as an input to the next iteration, and a different value of
v(j) can be used at each iteration. Finally, morphological
closing and opening operations with a radius of mc and mo,
respectively, were applied to remove artifacts.

III. EXPERIMENTAL SETUP

We empirically evaluated our method in our application
scenario. In particular, we studied: (1) if our method can
accurately identify anomalous regions in retinal OCT data,
(2) the contribution of each of the individual components of
our proposed approach in the final results, (3) the lesion-wise
detection performance of the method, and (4) the volume-wise
classification accuracy of the algorithm, based on the average
number of anomalous pixels per B-scan for each volume..

a) Data: We used six data sets of macula centered
Spectralis (Heidelberg Engineering, GER) OCT scans, with
512 × 496 × 49 voxels per volume, covering approximately
6mm × 2mm × 6mm of the retina. The first two datasets
normal and normal evaluation comprise 226 and 33 healthy
volumes, respectively, which were selected from 482 / 209
contralateral eye scans of patients with Retinal Vein Occlusion
(RVO) / AMD in the other eye. According to the definition



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, JANUARY 2019 6

of healthy provided in Section I, volumes with pathological
changes beyond age-related alterations were excluded. The
normal data set was randomly split on a patient basis into
198 training and 28 validation cases to train our segmentation
model. The normal evaluation set, on the other hand, was only
used for evaluation purposes. The third dataset late wet AMD
comprised 31 OCT volumes (5 validation, 26 test) with active
neovascular AMD. A retina specialist manually annotated all
the areas containing pathologic features, resulting in pixel-wise
annotations of anomalous regions. All these datasets have been
already used for training and evalution in [14], using the same
configuration. This allows a direct comparison with such an
approach.
Four volume-wise disease classification experiments were per-
formed by comparing the anomalous areas in healthy subjects
vs diseased. The late wet AMD test set, 30 DME, 25 RVO and
34 dry GA volumes were used separately for this purpose.

b) Training details: Intensity values of each individual
B-scan were rescaled between 0 and 1 before being fed to the
network. We used Kaiming initialization [43], Adam optimiza-
tion [44], and a learning rate of 1 × 10−4 (multiplied by 0.2
every 5 epochs). During training, random data augmentations
were applied, including horizontal flipping, rotation up to 10◦,
horizontal / vertical translations up to 5% / 20% of the B-scan
size and scaling up to 2%. The network was trained for 25
epochs on the normal training set, and the model with the best
average Dice for layer segmentation on the normal validation
set was selected for evaluation. We trained the model with
different dropout rates p = {0.1, 0.2, 0.3, 0.4, 0.5}, and the
model with the highest Dice for anomaly segmentation on the
late wet AMD validation set was selected for performance
evaluation on the late wet AMD test set.

c) Anomaly detection details: At inference time, 50 MC
samples with dropout were retrieved per B-scan. For post-
processing, we used s = 10, mc = 4, and mo = 2, where
these parameters were selected empirically by qualitatively
analyzing the results in a few B-scans from the late wet
AMD validation set. Two iterations of the majority-ray-casting
algorithm were performed, using v(1) = 3 and v(2) = 4,
and 20 different thresholds t = {0.01, 0.02, ...0.19, 0.20} were
evaluated on the lateAMD validation set. The best threshold
according to the average validation Dice was selected for per-
formance evaluation on the lateAMD test set. This calibration
ensured to retrieve compact annotations consistent with the
desired blob-shape appearance.

A. Segmentation accuracy

The segmentation accuracy was evaluated using precision,
recall and Dice, which are standard metrics for binary seg-
mentation tasks. Notice that performing a ROC curve based
evaluation is unfeasible in our case as our method does not
produce pixel-level likelihood predictions of anomalies, but
binary labels.

To assess the contribution of each individual component of
our proposed approach in the final results, we performed a
series of ablation experiments. It is worth mentioning that the
test set was not used for designing the method: all our design

decisions were based on the validation set performance. These
ablation studies are performed on the test set only to illustrate
how changing our model can affect the results. For the sake of
brevity, from now on we will refer to the full method described
in Section II as WeakAnD (from Weak Anomaly Detection).

• Binary layer-segmentation: While the proposed WeakAnD
is trained with 11 layer classes, we trained a second net-
work, namely WeakAnD(binary), for the binary segmenta-
tion task ”retina/background”. This experiment allows to
assess the influence of annotation details in the anomaly
detection performance.

• Remove majority-ray-casting: To show the necessity of
the majority-ray-casting approach, we compared against a
simple post-processing only thresholding the uncertainty
maps u (WeakAnD (thresholding)). We also replaced the
majority-ray-casting step with a straightforward convex
hull step (WeakAnD (convex-hull)).

• Remove morphological operations: The final morpholog-
ical closing and opening operations were removed in this
ablation experiment (WeakAnD (w/o closing/opening)).

• Layer flattening: As an additional pre-processing step
for the lateAMD dataset, the retina was flattened using
the bottom layer (Bruch’s Membrane - BM), projecting
it onto a horizontal plane, following the pre-processing
approach in [14]. Our hypothesis is that flattening the
retina helps to meet the assumption of majority-ray-
casting, i.e. horizontal orientation of the retina.

B. Lesion-wise Detection

We are interested in evaluating the detection performance
of the proposed approach on a lesion-wise basis. To this end,
we define each connected anomaly within a B-scan as a single
lesion (e.g., Fig. 7(b) presents two lesions). A Dice index is
computed for each individual lesion to quantify its overlap
with its corresponding manual annotation. A thresholding
according to a reference value d is then performed, where the
amount of true positives is counted as the number of lesions
with a Dice index higher than d. These values are used to
compute lesion-detection Recall (LD-Red) and lesion-detection
Precision (LD-Prd):

LD-Red =
TPd

TPd + FNd
(5)

LD-Prd =
TPd

TPd + FPd
(6)

where TPd, FNd and FPd are the number of true positive,
false negative and false positive lesions for a given d. By
computing these metrics for each possible d ∈ [0, 1], we can
then plot both LD-Re and LD-Pr curves. These plots allow
to assess the stability of the Dice values with respect to the
lesion detection performance. Notice that this cannot be used
to select an operating point as it is defined over all possible
dice values and not on lesion probabilities.

C. Volume-wise Disease Detection

We conducted four additional experiments to evaluate if
the proposed method can be used to discriminate diseased
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TABLE I
QUANTITATIVE RESULTS ON THE LATE WET AMD VALIDATION SET WITH

VARYING DROPOUT PARAMETERS.

Dropout Dice

0.1 0.783 (0.05)
0.2 0.778 (0.02)
0.3 0.796 (0.03)
0.4 0.798 (0.03)
0.5 0.783 (0.03)

TABLE II
QUANTITATIVE RESULTS OF ANOMALY DETECTION ON THE LATE WET

AMD TEST SET.

Method Precision Recall Dice

DDAEent [14] 0.47 (0.12) 0.63 (0.06) 0.53 (0.09)
Entropy of Soft Predictions 0.600 (0.08) 0.622 (0.09) 0.606 (0.07)
WeakAnD 0.739 (0.06) 0.808 (0.07) 0.768 (0.03)
WeakAnD (with layer-flattening) 0.748 (0.06) 0.844 (0.07) 0.789 (0.03)

versus healthy patients and to further assess the behavior of
our approach on healthy cases. Without additional training,
the average anomalous area per B-scan for each volume was
directly used as a discriminative feature to separate between
healthy and diseased cases. The following setups were used:
normal evaluation vs late wet AMD test set, normal evaluation
vs GA, normal evaluation vs RVO and normal evaluation vs
DME.

IV. RESULTS

Quantitative results for anomaly detection are provided
in Table II. Two baselines are included: the state-of-the-art
method described in [14] and an additional approach based on
replacing our epistemic uncertainty estimates by the entropy
of the soft predictions of the layers. It can be seen that the
proposed approach outperformed the two baselines by a large
margin. When layer-flattening is applied to pre-process the
OCT volumes as in [14], an improvement in performance is
also observed, with a statistical significant increment in the
Dice values from 0.768 to 0.789 (paired Wilcoxon signed-rank
test, p = 0.00007). The final WeakAnD model used a threshold
of t = 0.10 and a dropout rate of p = 0.4. However, we
experimentally observed that the performance on the validation
set was not too sensitive to the dropout parameter (Table I.

Qualitative anomaly segmentation results obtained in the
late AMD test set are shown in Fig. 5. The central B-scans,
corresponding to the volumes in which our method performed
best/worst in terms of Dice, are shown in the top/bottom
two rows. An additional example of a non central B-scan is
depicted in Fig. 1. Further qualitative results in DME, RVO
and GA cases are depicted in Fig. 11 and in the supplementary
material.

A scatter plot comparing the total area (in pixels) of
anomalies (as manually annotated by the expert) and the
level of uncertainty of the segmentation model is depicted in
Fig. 6. Each point corresponds to an individual OCT volume
in the late wet AMD test set. The linear regression line for
the corresponding values is also included in the plot. The

TABLE III
QUANTITATIVE RESULTS OF THE ABLATION STUDIES, AS EVALUATED ON

THE LATE WET AMD TEST SET.

Method Precision Recall Dice

WeakAnD (thresholding) 0.614 (0.05) 0.504 (0.06) 0.550 (0.04)
WeakAnD (binary) 0.716 (0.07) 0.620 (0.12) 0.655 (0.07)
WeakAnD (convex-hull) 0.708 (0.07) 0.836 (0.08) 0.761 (0.04)
WeakAnD (w/o closing/opening) 0.727 (0.06) 0.815 (0.07) 0.765 (0.03)
WeakAnD 0.739 (0.06) 0.808 (0.07) 0.768 (0.03)

correlation between variables, as measured using the Pearson
correlation coefficient, is ρ = 0.91.

a) Segmentation Accuracy: Table III provides quantita-
tive results of the conducted ablation studies, while qualitative
results are shown in Fig. 7. It can be observed that all the
ablations resulted in a performance loss, with different quan-
titative and qualitative effects. In particular, the importance of
using a fine-grained layer segmentation is highlighted by the
drop in the observed evaluation metrics when using a binary
segmentation.

b) Lesion-wise Detection: Lesion-wise precision and re-
call curves are shown in Fig. 8. The corresponding curves
for the baseline methods are also included for comparison
purposes.

c) Volume-wise Disease Detection: Fig. 9 depict his-
tograms for the volume-wise disease detection experiment,
both for the two baselines ( [14] (a) and entropy (b)) and
our method (c). Red bars correspond to patients from the
late wet AMD data set, while green bars are associated to
patients in the normal evaluation set. The horizontal axis
represents the average number of anomalous pixels per B-scan
for each volume, while the vertical axis indicates the number
of patients with a similar anomalous area. Fig. 9 (b) and (c)
shows no overlap between the healthy and the abnormal sets,
while Fig. 9 (a) does. Qualitative examples of the anomalies
detected in healthy cases from the normal evaluation set are
depicted in Fig. 12. Both images correspond to the cases with
the largest anomalous area. The detected anomalies in these
cases correspond to imaging artifacts (Fig. 12, top) or small
deviations from normal retinas such small drusen deposits
(Fig. 12, bottom). A small false positive is observed at the
center of the fovea.

Fig. 10 presents scatter plots showing the average number
of anomalous pixels per B-scan for each diseased/healthy
volume in our volume-wise classification experiments. As
in Fig. 9, it can be seen that this feature is an almost
perfect predictor for this application. Qualitative results of the
central B-scan of DME, RVO and GA cases, respectively, are
presented in Fig. 11. The anomalous region detected in Fig. 11
(a) covers parts of the retina with intraretinal cystoid fluid.
The segmentation in Fig. 11 (b) shows a similar behaviour,
although it also includes areas of intraretinal hyperreflective
foci. Finally, Fig 11 (c) illustrates that our method is also
capable of selectively detecting areas of RPE atrophy and
neurosensory thinning in eyes with GA.
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Fig. 5. Qualitative results of the proposed method, on the late wet AMD test set. Central B-scans of volumes in which the proposed method performed
best/worst in terms of the Dice index are shown. The corresponding Dice values are 0.82, 0.81, 0.72 and 0.72, from top to bottom. The last column indicates
the overlap between the manual annotations of anomaly in green and the prediction of anomaly by our model in red.

Fig. 6. Correlation between the total amount of uncertainty and the area of
anomaly annotations. Each point in the plot corresponds to one OCT volume
in the late wet AMD test set. The least-squared-fit line as well as the Pearson
correlation coefficient ρ are provided.

Fig. 7. Qualitative results of the ablation studies, showing anomaly seg-
mentation results on an exemplary sample. (a) Original B-scan, (b) Manual
annotation, Segmentation results of (c) WeakAnD (binary), (d) WeakAnD
(thresholding), (e) WeakAnD (convex-hull) and (f) WeakAnD.

V. DISCUSSION

We propose to detect and segment anomalies in retinal OCT
images using epistemic uncertainty estimations. The approach
is built on the assumption that epistemic uncertainty correlates
with unknown anatomical variability (anomalies), not present
in the training data. This claim is supported by the results,
in particular by the high correlation (ρ=0.91) between the
amount of anomalous area and uncertainty, as observed in
Fig. 6. Another alternative to identify anomalies is to use

Fig. 8. Lesion detection Recall (LD-Re) and Precision (LD-Pr) curves for the
proposed approach (solid) and the baseline methods. The low LD-Precision
curve of [14] can be explained by its noisy segmentation results which lead
to several tiny false positive lesions.

the entropy of the soft predictions of the layer segmentation
method. Using the soft predictions of neural networks directly
has been previously explored as an alternative to identify
out-of-distribution samples [45], [46]. We used this idea as
a baseline to compare with and we observed that epistemic
uncertainties are more powerful to reflect abnormal changes
with respect to the training set (Table II, Fig. 8). We believe
this is caused by the softmax predictions capturing different
information than uncertainty estimates obtained through MC-
sampling. The soft predictions indicate the probability of a
given pixel belonging to a specific class, while an uncertainty
estimate provides information regarding the confidence of the
network about assigning a specific likelihood. As pointed out
by [18], a model can be uncertain in its predictions even with
a high softmax output for a specific class.

We also took advantage of weak supervision by training our
segmentation model with labels provided by an existing auto-
mated approach [24], which is known to perform accurately in
healthy scans. Thus, instead of relying on a large training set
of normal and diseased patients with costly per-pixel manual
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(a) (c)(b)

Fig. 9. Histograms of the volume-wise classification experiment for detecting late wet AMD cases. Results of (a) DDAE [14], (b) entropy of soft predictions
and (c) our method. The horizontal axis represents the average number of anomalous pixels per B-Scan for each volume and the vertical axis indicates the
number of patients. Green and red denote patients from the normal evaluation and the late wet AMD test datasets, respectively. Note that a separate overview
of the classification results of our method is plotted in Fig. 10

Fig. 10. Categorical scatter plot showing the results of all volume-wise
classification experiments (AMD, DME, RVO and GA). Each dot represents a
patient volume. Diseases are indicated in the horizontal axis, while the vertical
axis represents the average number of anomalous pixels per B-Scan for each
volume. Green and red denote patients from the normal evaluation and the
diseased datasets, respectively.

Fig. 11. Qualitative results of the proposed method on (a) DME, (b) RVO
and (c) GA cases.

annotations of anomalies, we proposed to train our approach
using a normal data set, providing anatomical information via
weak labels. Our empirical observations showed that using this
alternative still results in high performance. Nevertheless, the
segmentation U-Net is not limited to be trained with weak
labels: we argue that it could also be trained using manual
annotations without loss of generality.

Compared to the baseline method for anomaly detection
in OCT [14], our approach achieved significantly better re-
sults in terms of several quantitative metrics (Table II). In-
terpreting these pixel-wise quality measures requires taking
into consideration that manually annotating anomalies is a
difficult task: transitions between healthy and diseased scans
are continuous, often unclear, hard to define and exposed
to subjective interpretation. Therefore, ensuring exact and

Fig. 12. Anomaly detection in normal scans. Two B-scans from the normal
evaluation dataset with the largest anomalous area are shown. From left
to right: Original B-scans, uncertainty maps and corresponding anomaly
segmentation results. Top row: cut edge artifact (blue arrow). Bottom row:
small drusen (blue arrows) and false positives (red arrows).

consistent ground truth labellings is nearly impossible. The
high degree of overlap between the outputs of our model
and the manual annotations indicates then that the proposed
approach is able to approximate the performance of a human
expert. This is also supported by the fact that the worst
observed Dice value (0.72) is relatively high. To complement
these interpretations, we also evaluated the performance of the
proposed approach to detect lesions as such. The evaluation
of the lesion-wise detection experiment, depicted in Fig. 8,
linked quantitative pixel-based evaluation metrics with lesion-
level detection capabilities. It can be seen that increasing
the requirement of Dice performance d for lesions from 0.0
to 0.6 only decreases the lesion detection performance by
10%, as measured in terms of lesion detection precision and
recall. These results indicate that the ability of the method to
accurately identify the borders of the anomalies does not have
a significant effect in the lesion detection performance, as most
of the overlap area with the human expert annotation is located
in affected tissue. In other words, most of the changes in Dice
are explained by differences in the borders of the anomalous
regions (as seen in Fig. 5, right column).

Moreover, it was observed that the size of the predicted
anomalous areas was an almost perfect discriminator to clas-
sify normal vs. diseased subjects. These volume-wise classi-
fication experiments form a proof-of-concept evaluation for
a potential screening application in multiple diseases such as
wet AMD, dry GA, DME or RVO (Fig. 10). We hypothesize
that this is a consequence of our method being able to detect
abnormalities in diseased subject without oversegmenting false
positives in healthy subjects (Fig. 12).

Although our method does not rely on ground truth annota-
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tions of abnormalities for training, it still has hyperparameters
that need to be optimized. In our experiments, we used a
late wet AMD validation set comprising 5 OCT volumes. We
observed that the method is not too sensitive to changes in the
dropout rate (Table I). Furthermore, our classification results
in different diseases indicate that using a validation set with
only one specific condition might be enough to ensure good
generalization.

Finally, our approach also reported a significantly better
performance than the DDAE method [14] when evaluated both
on a lesion and a volume basis. This might be a consequence
of the noise in the segmentations generated by the baseline
approach, which results in several small isolated regions that
increase the false positive rate. Nevertheless, it is important
to note that [14] tackles a more difficult task, not only to
segment anomalies but to identify categories of them. This
restrained such an approach to a localized representation that
enables subsequent clustering on local level. In contrast, our
method only aims to provide accurate pixel-wise segmentation
for the detected abnormalities, not specifically designed for
a subsequent clustering step of anomalies. In addition, the
method in [14] does not incorporate anatomical information
during training nor post processing.

The qualitative analysis of the results in Fig. 5 revealed
that the uncertainty maps showed high values surrounding
subretinal fluid (SRF), a concave form in cases of pigment
epithelial detachments (PED) and dense patterns in regions
of hyperreflective foci (HRF). In general, the segmentation
model predicted the background class with high confidence
in large areas of fluid, probably due to missing edges and/or
dark appearance in those regions. This observation highlights
the necessity of appropriate post-processing to obtain smooth
segmentation maps (Table III).

From the ablation study is also possible to conclude that
each part of the method is important to ensure accuracy and
consistent results. In particular, we observed that using less
informative target labels for the segmentation approach e.g.,
by targeting the whole retina instead of its constitutive layers
(WeakAnD (binary) in Table III) decreases the performance for
anomaly detection (Dice index drop of 14.7%). We observed
that the uncertainty maps produced by the binary alternative
were not as detailed and dense as the ones of the proposed
method. This caused segmentation shapes inconsistent with
the manual anomaly annotations (see Fig. 7(c)), as well as
apparent horizontal and vertical gap-artifacts of segmentation
areas. Considering the fact that the cellular components of the
retina are arranged in a layer-wise manner [47] and pathologies
alter their appearance, using retinal layer information proved
to be a particularly appropriate way to incorporate anatomical
knowledge into the model. This helped to achieve more
representative uncertainty values and, therefore, better results.
For this particular point, it is important to emphasize the
contribution of the post-processing method based on majority-
ray-casting. As observed in Table III, replacing this stage by
other alternative approaches caused drops in performance. Re-
moving majority-ray-casting and only conducting thresholding
of the uncertainty maps (WeakAnD (thresholding)) resulted in
poor quantitative results, decreasing the Dice index by 28.4%.

This is also reflected in Fig. 7(d), where the exemplary seg-
mentation covers not only the anomalous regions but also some
borders between retinal layers. This result was obtained using
an optimal threshold (t = 0.03) selected on the validation
set. Although this might compensate for the discontinuous
property in the area with true positive anomalies, it brings
further layer interfaces to the final segmentation, where a
certain degree of uncertainty is also present. Complementing
thresholding with a convex-hull based post-processing also
caused unwanted artifacts, e.g. in Fig. 7(e), where a small
blob in the top right (remaining after thresholding) caused
a peculiar segmentation. This is a consequence of the in-
ability of the convex-hull approach to handle multiple non-
connected anomalous areas by definition. On the contrary,
the anomalous area is better captured when applying our
majority-ray-casting method. This indicates the potential of
using a relatively straightforward approach combined with an
appropriate post-processing step in the context of anomaly
detection. Notice that this technique targets a blob-shaped
segmentation instead of a specific disease appearance. Our
post-processing approach is intended to help to transfer the
layered output of the uncertainty estimates to a blob-shaped
segmentation surrounding abnormalities, which we believe is
the most straightforward way to highlight them in general. The
previously published approach is already able to retrieve such
a shape (Fig. 3 in [14]), although with significant false positive
detections. Our thresholded uncertainty maps, on the other
hand, slightly outperform [14] in terms of Dice, but are not
able to retrieve such a blob-shape due to the partial blindness
of the uncertainty estimates. In other words, majority-ray-
casting helps to transfer the layered output of the uncertainty
estimates to a continuous representation that delivers an easier-
to-interpret result. This is line with what can be seen from
Table II and Table III, where [14] reported lower precision but
higher recall than our method. Finally it is worth mentioning
that, in addition to fluid related lesions (Fig. 5 and Fig. 11 (a)),
our approach detects other anomalies such as drusen (Fig. 12,
bottom row), hyperreflective material (Fig. 11 (b)), DRIL or
GA lesions (Fig. 11 (c)). This demonstrates that the presented
method allows to highlight a variety of retinal abnormalities
in multiple diseases.

We observed that the network detected anomalies only
in the area ranging from the top of the NFL to the RPE.
We believe that this is a consequence of the model being
restricted by the anatomy used for training. A similar behavior
was observed before in the binary model, trained to segment
the retina and the background. By using the weak labels
generated using the Garvin et al. [24] method, our network
is unable to capture representative uncertainty estimates in
regions that are jointly labeled as background. Our hypothesis
is that the network optimizes its loss function by focusing
more on the non-background layer labels. This makes the
network invariant to changes in areas below the RPE and above
the vitreous-macular interface, and therefore does not show
uncertainties there. Incorporating labels for other layers such
as the choroid might allow the model to explicitly learn the
normal characteristics of these regions, and thus show higher
uncertainty estimates when deviations from this appearance



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, JANUARY 2019 11

are observed (e.g. due to hypertransmision).
Finally, it is worth pointing out a potential limitation of the

majority-ray-casting algorithm, related to the internal distri-
bution and localization of anomalies within the retina. Since
the post-processing algorithm assumes that areas surrounded
by uncertainties are anomalous (Fig. 2), there could be spe-
cific clinical scenarios in which this assumption does not
hold: e.g. in between three independent anomaly detections
(Fig. 12, bottom row, bottom red arrow). Hence, this can lead
to oversegmentation. In some cases, we also observed false
positives in the fovea depression, caused by a thinning in
the top retinal layers (Fig. 12, bottom row, top red arrow).
Nevertheless, anomaly detection approaches are needed to
reach high levels of sensitivity when applied for screening or
detecting pathological areas, and false positives are tolerated to
a certain extent. Therefore, oversegmentation might not harm
the final application. Moreover, the volume-wise disease detec-
tion experiment showed perfect separation between diseased
and healthy subjects using only the amount of abnormal area
for discrimination.

VI. CONCLUSION

We proposed a weakly supervised anomaly detection
method based on epistemic uncertainty estimates from a
Bayesian multiclass U-Net model, with application in retinal
OCT analysis. The segmentation approach was trained on
a cohort of normal subjects to characterize healthy retinal
anatomy. No annotations of the target class (anomalies) were
used to learn that model. Instead, we took advantage of the fact
that traditional segmentation methods work accurately in well-
defined environments such as healthy populations, allowing to
easily obtain large amounts of segmented data. Following this
perspective, we used an automated method [24] to generate
weak labels for the individual retinal layers. During test time,
unseen B-scans were processed by the Bayesian network,
and Monte Carlo sampling with dropout was used to retrieve
epistemic uncertainty estimates. To better exploit its applica-
tion to segment potential anomalies, a novel post-processing
technique based on majority-ray-casting was introduced. The
final output was a binary mask with smooth segmentation of
retinal abnormalities.

The proposed anomaly detection approach needs only
healthy samples for training, detects the deviation from normal
by exploiting the injected anatomical information of healthy
scans and is therefore–by definition–not limited to a specific
disease or pathology. An extensive evaluation using 33 normal
and 115 diseased OCT volumes (1617 and 5635 B-scans,
respectively) demonstrates that our uncertainty-driven method
is able to detect anomalies under several conditions, outper-
forming alternative approaches. This makes it a promising tool
in the context of biomarker discovery, where the detection
and exploration of atypical visual variability is a fundamental
task. In this context, further research is planned to explore the
suitability of the presented method in the context of biomarker
detection.
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Supplementary Material 
 

S1. Qualitative Results – DME 

 

Supplementary Figure 1. Qualitative results of the proposed anomaly detection method on the diabetic macular 
edema (DME) dataset. All images correspond to central B-scans of the volumes. The red contours depict the 
boundaries of the segmented anomalous regions. 

  



S2. Qualitative Results – RVO 

 

Supplementary Figure 2. Qualitative results of the proposed anomaly detection method on the retinal vein 
occlusion (RVO) dataset. All images correspond to central B-scans of the volumes. The red contours depict the 
boundaries of the segmented anomalous regions. 

  



S3. Qualitative Results – GA 

 

Supplementary Figure 3. Qualitative results of the proposed anomaly detection method on the geographic atrophy 
(GA) dataset. All images correspond to central B-scans of the volumes. The red contours depict the boundaries of 
the segmented anomalous regions. 

 





CHAPTER7
A Paradigm Shi� in Retinal Biomarker
Identification by Unsupervised Deep

Learning

“Investigate what is

and not what pleases.”

– Johann Wolfgang von Goethe

In the following we perform biomarker discovery based on an unsupervised feature learning
strategy. �e aim of the method is to capture phenotype characteristics of a diseased

patient population, without the need of manual annotations for training. �is means that
large-scale image data is explored in an unbiased way, remaining invariant to established
medical hypotheses.

We propose to learn disease speci�c features from OCT images in a completely unsu-
pervised manner, utilizing a multi-stage autoencoder based approach. In this way, both a
representation of the local morphology of the retina and the whole volume is learned, allow-
ing an analysis on di�erent levels. First, we use a deep autoencoder to learn a low-dimensional
embedding of A-scans. �is feature representation encodes local characteristics of the retina,
representing the morphological information at a speci�c position across all retinal layers. In
a second stage, a convolutional autoencoder is trained on the local embeddings of the �rst
stage, learning a low-dimensional global volume representation. We extensively evaluate
the learned features to asses their potential as biomarkers. Besides a qualitative analysis, we
correlated the features with morphological a�ributes of retinal morphology as conventionally
measured from OCT, investigated their relation to measures of disease activity obtained by
�uorescein angiography and evaluated their ability to predict visual function.

85



�e following manuscript ”A paradigm shi� in retinal biomarker identi�cation by unsu-
pervised deep learning” is planned for submission to a journal.
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Abstract

Manageable and clinically meaningful biomarkers are an enormous unmet need for personalized health
care using diagnostic imaging data. High-resolution retinal imaging by optical coherence tomography
offers abundant individualized medical data and the opportunity for deep phenotyping. Artificial intel-
ligence has successfully been leveraged to evaluate specifically defined retinal biomarkers. However, this
requires prohibitively large amounts of human annotations of training data, and inherently carries a bias
caused by the fallible and dogmatic nature of human experts who predefine the biomarkers. Here, our aim
was to create an unbiased vocabulary of biomarkers representing the most important patterns of light-
tissue interaction in three-dimensional retinal imaging using optical coherence tomography. We introduce
a rigorously data-driven unsupervised deep learning approach, resulting in identification of biomarker can-
didates without any restricting input or domain knowledge beyond raw images. We demonstrate that
the identified features correlate well with specific biomarkers traditionally used in clinical practice, and
largely surpass them in the ability to correlate visual function with retinal structure in our population.
In addition, our method is also able to discover hitherto unknown biomarker candidates. The complex
morphologic information contained in retinal imaging is condensed into an extremely compact represen-
tation of only 20 features, offering a perspective on how big data in the medical imaging domain can
efficiently be made manageable in the near future.

Keywords: unsupervised learning, optical coherence tomography, biomarker discovery, autoencoder,
age-related macular degeneration

1. Introduction

Personalized health care based on big -omics data requires efficient biomarkers as input for predic-
tive models. Ideally, these biomarkers would be characteristic of the data, unbiased, compact, task-
independent, and easy to obtain. In the field of ophthalmology, modern retinal imaging by optical coher-
ence tomography (OCT) shows great potential for personalized health care applications. OCT is an af-
fordable, non-invasive imaging technique that acquires huge datasets of high-resolution three-dimensional
images within instants [9]. It has become the most important diagnostic test in ophthalmology, with ap-
proximately 30 million procedures annually or an OCT scan taken every few seconds worldwide [6]. This
leaves researchers and practitioners overwhelmed by millions of images and a lacking consensus regarding
the relevant imaging biomarkers for an efficient management of the leading diseases of modern times such10

as diabetic retinopathy and age-related macular degeneration.
The automated analysis of retinal imaging data by artificial intelligence is currently evolving as a

paradigm-shifting tool to bridge the gap between rapid advances in imaging hardware and the challenges
in big-data analysis [17]. A major issue is that native OCT volumes are too high-dimensional to be
effectively used as an input for predictive models. Thus, specific pre-defined biomarkers such as retinal
fluid typically serve as input for subsequent analysis steps [13, 16]. Recent pioneering studies have
demonstrated that these established biomarkers can be reliably assessed and measured by supervised
deep learning, a group of computer methods where an algorithm learns to replicate human behavior by
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using prior experience in the form of tens of thousands of manually labelled samples [14, 5]. This approach
has critical disadvantages because it can only find what is defined a-priori by human experts, thus being20

limited to known biomarkers, and it scales poorly due to the need for labor-intensive ground-truth data.
To surpass these limitations, we introduce a novel concept of exploring complex retinal imaging data.

Instead of manual labeling and supervised learning, we propose unsupervised deep learning for unbiased
feature generation [15]. We introduce an artificial intelligence algorithm that teaches itself to capture
the most characteristic local structural markers in OCT images, which represent the main patterns
of light-tissue interaction as OCT is acquired. In a second step, we achieve an extremely compact
global description of the impractically complex three-dimensional OCT scans. To validate our method,
we demonstrate that the obtained features correlate better with clinically relevant measures of retinal
function and disease activity than established biomarkers quantified by conventional supervised deep
learning.30

2. Results

2.1. Deep learning pipeline

The proposed artificial intelligence pipeline (Figure 2) consists of two auto-encoders to capture (a)
the most important local features in the 3D image stack; and (b) a compact global description of the
features obtained in the previous step.

In principle, an auto-encoder comprises two sequential deep neural networks. The first (encoding)
network is trained to produce high-level low-dimensional descriptors of input data (e.g., an image),
while the second (decoding) network is trained to reconstruct the original input data from the high-level
description provided by the encoding network. If the reconstruction is accurate (i.e. if the output of the
decoder matches the input of the encoder), we can assume that a meaningful high-level representation40

(or embedding) of the input data has been learned. These learned features serve as novel biomarker
candidates in our experiments.

OCT images are acquired by scanning a laser beam tomographically across the retina and sampling
the light-tissue interaction at each individual scanning location. Thus, we applied the first auto-encoder
on these individual scanning locations resembling vertical signal columns (A-scans, 1×1×1024) to learn
a 20-dimensional embedding of the local light-tissue interaction. The activation of the 20 learned local
features can be displayed and interpreted as feature maps (Figure 2 and Figure 1). We then applied
the second auto-encoder on 3D volumes comprised of the obtained local embeddings (512×128×20) and
learned a 20-dimensional embedding of the full volumes (Figure 2). Thus, we receive 20 global volume
features that represent the main spectrum of morphologic patterns of a 3D image.50

The auto-encoders were trained on a dataset consisting of 54,900 OCT volume scans (512×128×1024)
of 1,094 patients enrolled in a classic randomized clinical trial described elsewhere (NCT00891735 ) [1].
To validate our approach, we used the baseline condition, when all patients presented with treatment
nave neovascular age-related macular degeneration in the study eye, and evaluated the correspondence of
the identified biomarker candidates with clinically established markers. These included markers of visual
function (best corrected visual acuity and low luminance visual acuity), markers of retinal morphology as
conventionally measured from OCT (retinal thickness, volume of intraretinal and subretinal fluid, volume
of pigment epithelial detachment) as well as measures of disease activity obtained by fluorescein angiog-
raphy, a conventional, invasive dye-based investigation (total area of lesion, total area of leakage) [18].
We did not perform correction for multiplicity for the conducted statistical tests, due to the explorative60

nature of this work. This procedure was selected in order not to increase the type II error in the biomarker
search.

2.2. Local features

The 20 learned unsupervised local features (a1 - a20) captured the local morphologic patterns in
the OCT data to a high degree and corresponded well to conventional OCT features, but also provided
previously unknown features, i.e. biomarker candidates that had not been considered yet in clinical
practice (Figure 1). The most relevant features are analyzed in detail below. Univariate correlations
between the average activation of the individual features per OCT volume and the validation metadata
are presented in Table 1. In general, correlations were stronger for anatomical metadata (r up to 0.73)
than for functional metadata (r up to -0.40).70

Machine learning regression was performed to evaluate the capability of all combined local features
to represent retinal morphology, visual function and disease activity. The prediction of the model for
functional and anatomical metadata is shown in Table 2.
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Figure 1: Representative examples of feature maps obtained by the local embedding. The composites to the right of each
column show heatmaps of conventional biomarkers obtained by validated segmentation algorithms using supervised deep
learning. High and low activation of the detected new biomarkers with concomitant visual function are shown side-by-side.
Top row: Feature a5 demonstrates a pronounced negative structure-function correlation, despite a low correspondence
to retinal fluid, which is the conventional marker attributed a high relevance for vision. We assume that this biomarker
candidate corresponds to subretinal hyperreflective material (arrow). Middle row: Feature a17 demonstrates the best
correlation with markers of exudation as conventionally measured in OCT. An excellent correspondence is for instance
observed for intraretinal cystoid fluid (compare the lobulated pattern). Bottom row: Feature a4 represents a new biomarker
candidate discovered in this work. The marker does not intrinsically correspond to any known clinical entity in OCT images.
Remarkably, a positive correlation between the activation of a4 and visual function markers was noted. IRC = intraretinal
cystoid fluid; PED = pigment epithelial detachment; RT= retinal thickness; SRF = subretinal fluid.
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Table 1: Univariate Pearson correlation coefficients between the 20 identified unsupervised local features (a1-a20) and
functional variables as well as measures of disease activity by OCT and fluorescein angiography. Green colour indicates a
positive, and blue colour a negative correlation. The level of correlation is colour coded, and the strongest correlation for
each variable are shown in boxes. Correlations with no significant difference from 0 are greyed out.
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Visual Function Optical coherence tomography Fluorescein angiography

BCVA LLVA RT IRC SRF PED Lesion area Leakage area
(letter score) (letter score) (μm) (mm3) (mm3) (mm3) (mm2) (mm2)

Local features
R2 0.26 0.44 0.65 0.09 0.44 0.20 0.27 0.22
MAE 9.3±7.1 10.3±6.5 10.6±11.0 62±48 333±3.3e6 300±248 1.2±1.0 1.3±1.0

Global features
R2 0.29 0.46 0.64 0.19 0.27 0.28 0.21 0.15
MAE 8.9±7.3 9.7±7.0 10.9±11.0 54±50 342±412 286±237 1.4±1.0 1.3±0.8

Table 2: Machine learning prediction of functional and morphologic target variables from local and global features. For each
outcome variable, the coefficient of determination (R) and mean absolute error (MAE) are shown. BCVA, best-corrected
visual acuity; IRC = intraretinal cystoid fluid; LLVA = low luminance visual acuity; PED = pigment epithelial detachment;
RT = retinal thickness; SRF = subretinal fluid.

2.3. Interpretation of selected local features

The features with the largest correlation coefficients for each individual meta-variable are further
analyzed below and presented in detail in Figure 1. Feature a5 achieved the best correlation with
functional target variables, i.e. best-corrected visual acuity (r = -0.31) and low luminance visual acuity
(r = -0.40). Interestingly, a5 did not show strong correlations with the quantified morphologic variables
such as retinal thickness or fluid. However, a5 visually corresponded to hyperreflective subretinal lesions
that may represent subretinal fibrosis with photoreceptor function loss (Figure 1).80

Feature a17 corresponded best to the conventional fluid-related markers in OCT images, including
retinal thickness (r = 0.73), intraretinal cystoid fluid volume (r = 0.37), subretinal fluid volume (r =
0.45) and pigment epithelial detachment volume (r = 0.32). Figure 1 illustrates the excellent topographic
correspondence between a17 and segmentations of intraretinal cystoid fluid and subretinal fluid. The
retinal vasculature was also captured by a17.

Feature a4 demonstrated the highest (negative) correlation with conventional features obtained by
fluorescein angiography. A4 also surprisingly revealed a markedly positive correlation with retinal func-
tion, i.e. r = 0.30 with best-corrected visual acuity and r = 0.36 with low luminance visual acuity. This
marker was negatively correlated with the known OCT markers. Clinically, the feature did not corre-
spond intrinsically to any marker that is currently used in ophthalmic practice. Thus, our deep learning90

network identified a hitherto unconsidered biomarker candidate with a high relevance for visual function.
The marker captured the typical pattern of the large choroidal vasculature, and in patients with lower
visual acuity showed central punched out regions of low activation (Figure 1).

2.4. Global features

The second autoencoder provided 20 global features per OCT volume scan (v1 - v20). The univariate
correlation of the features with functional and morphologic metadata is shown in supplementary Table S1.
The global features do not contain interpretable spatial information; thus, a simple correlation to image
structures similar to the local features is not possible. Generally, the univariate correlations between the
global features and clinical metadata were slightly less strong compared to the local features.

Again, multivariate regression analysis was carried out to investigate the capability of all global100

markers combined to represent retinal morphology, visual function and disease activity. Results of the
regression analysis are provided in Table 2. In general, the global features captured the variability in
the metadata similarly well as the local features; however, while using a much simpler description of the
OCT data (20 variables per volume versus 512×128×20 variables).

2.5. Descriptive power of novel unsupervised features versus conventional supervised features

We further evaluated the descriptive power of features obtained by the newly developed image analysis
approach against conventional biomarkers obtained by supervised deep learning. For this experiment, we
compared the prediction model for visual function based on the new features (Table 2) against a separate
prediction model based on traditional markers, i.e. the following variables: Intraretinal cystoid fluid
(volume and area), subretinal fluid (volume and area), pigment epithelial detachment (volume and area)110

and mean retinal thickness. Each of these features was quantified in the central 1mm cylinder centered
on the fovea centralis, the 1-3mm ring and the area outside the 3mm ring, resulting in 21 variables for a
fair comparison to the 20 unsupervised variables. Using these conventional variables, the coefficients of
determination were R2 = 0.20 (MAE: 9.3 ± 7.3) for best corrected visual acuity (p = 0.02 against novel
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global features), and R2 = 0.29 (MAE: 11.5 ± 7.9) for low luminance visual acuity (p = 0.05 against
novel global features).

3. Discussion

Supervised deep learning based on manually labelled input data can successfully replicate the behavior
of human experts in relatively simple, but labor-intensive tasks such as in triaging retinal OCT scans [5].
However, it has critical limitations, including (1) bias introduced by the underlying domain knowledge120

used to generate the man-made training data, and (2) limited scalability due to often prohibitively large
amounts of annotated data required. These limits of supervised deep learning have been elegantly cir-
cumvented by reinforcement learning, where the computer program AlphaGo Zero achieved superhuman
performance in playing the game Go by solely being taught the game rules [20]. In medical imaging
however, diagnostic procedures and decisions are not nearly as clear as the rules of a board game, and
novel innovative approaches are required particularly as therapeutic implications are often controversial
and real world outcomes generally poor. By introducing unsupervised deep learning to retinal image
analysis, we create a rigorously data-driven analytical tool that is (1) unbiased because it does not rely
on human-defined features or hypotheses, and (2) scalable at will because it does not require annotated
training data. Our unsupervised deep learning pipeline identified clinically relevant biomarker candidates130

in a large-scale OCT dataset that were as good as, or better, in representing the visual acuity of patients
in a large patient cohort than conventional manually defined features measured by state-of-the-art super-
vised deep learning methods. We believe our method produces biomarkers that are characteristic of the
data, unbiased, compact, task-independent, and easy to obtain.

One major advantage of unsupervised learning is that it automatically learns the most characteristic
image features in a dataset, while remaining invariant to any prefabricated and hence biased medical
hypotheses. In our experiments, the deep learning algorithm captured the main local biomarkers conven-
tionally used in OCT interpretation, including retinal thickness, intraretinal cystoid fluid, subretinal fluid
and pigment epithelial detachment [18]. In addition, it recognized subretinal hyperreflective lesions (a5),
which are thought to represent incipient fibrosis, as an important feature unrelated to exudation [22]. In140

fact, this particular feature showed the strongest correlation with visual function in our cohort; albeit
currently not being considered as an endpoint in trials for retinal therapeutics. Thus, our disruptive
approach of an unbiased biomarker search may be useful in identifying, defining and prioritizing targets
and endpoints for the development of new compounds and interventions. In addition to representing the
main known characteristics, our method may also be used to discover new marker candidates in image
data. To complement the usual suspects, the deep learning algorithm identified a new feature (a4), which
demonstrated a pronouncedly positive correlation with visual acuity in our cohort of patients. Further
research may be directed at identifying anatomical correlates for this marker, such as intact neurosensory
structures which do not attract any attention in current clinical trials despite morphological appearance.
Currently, we are unable to pinpoint individual local markers to a particular anterior-posterior location150

in OCT A-scans, and therefore the exact origin of the feature activation is yet unknown. Nevertheless,
biomarker discovery such as reported here may become an important aspect in medical image interpre-
tation as conventional markers are regarded to have substantial weaknesses in reflecting visual function
and disease activity, and pivotal drug developments fail presumably also due to the lack of reliable
endpoints [21, 8].

Obviously, not all local markers represent clinically relevant information similar to the OCT image
itself. For instance, feature a11 showed very low correlations with the provided meta-information, while
showing homogenous activation patterns across images. We may speculate that some of our features,
including a11, capture image characteristics such as noise, that are part of the image, but do not relate
to individual biomarkers. Future work may address the automated establishment of the number of160

dimensions in the auto-encoder embedding and thus analyze how many individual features are required
to represent an image dataset comprehensively.

The second step of the unsupervised embedding resulted in a characteristic, compact representation
of complex three-dimensional OCT datasets. Without human-made limitation to particular variables or
measurements, our algorithm provides 20 quantified global features for each volume that represent the
major morphologic patterns in the image data, as opposed to an unmanageable amount of 67 million
(512×128×1024) voxels in the native image. Despite this heavy compression, the resulting measurements
still correlate well with visual acuity, conventional markers on OCT, and multimodal markers of disease
activity (e.g. on fluorescein angiography), and surpass conventional OCT markers obtained by supervised
learning in representing visual function. Once validated in prospective studies, we believe that unbiased,170
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manageable descriptions of OCT such as the one presented here may be applied in clinical and research
practice because they could significantly facilitate the interpretation of complex imaging data, and make
therapeutic decision making based on imaging studies at the same time simpler, as well as more reliable.

In our experiments, we achieved a coefficient of determination of R2 = 0.29 and R2 = 0.46 between
unsupervised global features and best-corrected and low-luminance visual acuity, respectively, in a large
cohort of patients with neovascular age-related macular degeneration at the native stage. The results on
best-corrected visual acuity compare favorably with those previously reported in the literature for large
datasets, and were indeed superior to the correlations achieved by using conventional OCT markers such
as fluid volume, which highlights the value of our approach [16]. Interestingly, the correlation with low-
luminance visual acuity was consistently larger than with best-corrected visual acuity. Previous studies180

have shown impairment in low-luminance visual acuity in patients with age-related macular degeneration
that exceeds the deficits seen in best-corrected visual acuity [7, 12, 4]. Possibly, morphologic changes
on OCT correspond better to low-luminance visual acuity because it is a more sensitive measurement of
visual dysfunction in the macular area.

Unsupervised deep learning has previously been leveraged in medical imaging. For instance, an
unsupervised learned representation of local 2D image patches was used for the task of mammography
risk scoring [10]. In the context of ophthalmic imaging, researchers have proposed algorithms to identify
abnormal tissue patterns by learning the characteristic appearance of normal tissue [14, 19]. In such
an approach, anomalous regions can be analyzed further to establish clusters of biomarkers allowing to
define marker categories. In contrast, we propose to learn both local and global high-level descriptions of190

images, which are not restricted to anomalous structures, to provide a compact representation of entire
volumes, and omit the need to prepare a dataset of normal patients. We believe that this makes our
approach a valuable tool for hypothesis generation and biomarker identification, supporting a critical shift
of mindset in medical image analysis. Namely, it expands the conventional biomarker evaluation strategy
from supervised automation of expert annotation in known anomalies to an unrestricted unsupervised
exploration of large-scale datasets.

Whenever image data are compressed to high level representations, topographic information of the
represented biomarkers is reduced. In our second, global embedding, visualization of the features is
not possible any longer because they do not contain any spatial information. Thus, it is challenging to
interpret the individual biomarkers and their contributions to the variability of retinal morphology. These200

difficulties in interpreting the mechanisms of the deep learning model constitute the main limitation of
our proposed algorithm. From a clinical perspective, it has always been desirable to clinically understand
the steps taken by a model to reach a particular decision.(21) However, if doctors wish to augment their
practice by artificial intelligence, these traditional paradigms may need to be revisited particularly as the
hardware technology of image acquisition has long surpassed the feasibility of expert-based definition of
features and assessment of imaging studies.

In this paper we introduced unsupervised deep learning to analyze high-resolution, three-dimensional
retinal images without human-introduced bias. We presented novel auto-encoder based technology to
capture the most relevant local structural biomarkers, including discovery of a new marker candidate.
In a second embedding, we obtained a compact global description of the complex three-dimensional210

retinal scans, which nevertheless correlated better to visual acuity of patients than established artificial-
intelligence based measurements. Once validated in additional, independent datasets, unsupervised ma-
chine learning and the resulting biomarkers may be employed in medical image analysis in retinal imaging
and beyond.

4. Materials and Methods

4.1. Background and approach

In optical coherence tomography (OCT) an interferogram is obtained at a specific point of a sample,
yielding an A-Scan containing one-dimensional information (along the z-axis) [9]. The A-scan data thus
represent the condition of the retina at that specific position in the eye. By scanning the measurement
beam across the sampling area, millions of A-scans are concatenated to form entire volume scans. It is220

this multi-step data acquisition which motivates the reasoning behind our proposed approach. Instead
of trying to find an embedding for a volume in a single step, we construct two separate embeddings as
depicted in Figure 2 that reflect the underlying process of OCT acquisition as well as the basic anatomy
of the retina. In the first level, we learn a compact embedding of A-Scans and therefore of the local
condition of the retina, using a fully connected auto-encoder. In the second level, a convolutional auto-
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encoder is used to learn a global representation of whole OCT volumes based on the embedding obtained
in the first level, resulting in a massive reduction of dimensionality.

Figure 2: Flow-chart of the proposed two-level deep learning pipeline. In each step, an auto-encoder learns to encode the
input data in a lower-dimensional embedding. First, the local encoder transforms each A-Scan into a 20-dimensional local
representation, resulting in 20 2D feature maps. This local representation forms the input of the second stage, the global
encoder. The global features provide a compact representation of an entire OCT volume.

4.2. Dataset

The experiments reported in this paper were conducted on a dataset consisting of 54,900 OCT volume
scans of 1,094 patients enrolled in a randomized clinical trial [1]. The volumes were acquired using Cirrus230

OCT devices (Carl Zeiss Meditec, Dublin, CA, USA) and had a voxel dimensionality of 512 × 128
× 1024, covering a physical area of 6mm × 6mm × 2mm, with a voxel spacing of 11.7m × 46.9m
× 2m. The dataset was randomly divided into a train (90%) and test set (10%) with 985 and 109
patients, respectively. There was no overlap of patients between those two sets. All study procedures
were conducted in accordance with the tenets set forth in the Declaration of Helsinki and following Good
Clinical Practice guidelines. All patients provided written informed consent before enrollment into the
clinical trial. For the retrospective analysis of the image data, approval was obtained by the Ethics
Committee at the Medical University of Vienna, Austria.

4.3. Data preprocessing

To reduce the large amount of speckle noise inherently present in OCT data, we use Bilateral Grids240

due to their fast runtime and easy implementation, on the individual B-Scans. We perform a single pass of
filtering to reduce noise while retaining subtle details [2]. The position of the retina along the A-Scan is not
fixed and depends on patient position during acquisition. To be invariant to this translation we compute
a one-dimensional Fast Fourier Transform (FFT) of the A-Scan and discard the phase information by
keeping only the magnitude of the complex FFT signal. Due to the resulting symmetry of the real-valued
signal we only keep a vector of length 512 of the FFT amplitudes per 1024-long A-Scan.

4.4. Deep unsupervised learning of local features

Auto-encoders are trained without any labels and consist of two parts, the encoder and the decoder.
During training, the input is encoded by the encoder into a low-dimensional embedding, and subsequently
decoded by the decoder to reconstruct the original input. The underlying assumption is that the auto-
encoder has to learn a meaningful compact high-level representation of the data to be able to perform
accurate reconstruction. In Figure 3 and Figure 4, information within each auto-encoder always flows
from the left to the right, with the embedding being the lowest-dimensional state in the middle of the
stack. In the first stage of our framework (Figure 3), the A-Scan auto-encoder AE1 is composed of three
simple fully connected layers ([256/64/20] channels), with a weight matrix Wl, a bias vector bl and an
activation function σ:

yl = σ(Wlxl + bl). (1)

The sizes of the layer on both sides of the embedding are mirrored, and the weight matrices of two
corresponding layers are tied: Wl = WT

l . Throughout this work the activation function is set to be the
exponential linear unit (ELU) [3], with α = 1:

f(x) =

{
x if x > 0

α(exp(x)− 1) if x ≤ 0
, (2)
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The cost function used to drive the optimization in auto encoders measures the reconstruction error of
the final output y given an input vector x:

C(x) =
∑

(x− y)T (x− y). (3)

Using a randomly sampled subset of all the A-Scans available in the training set (1,600,000 A-Scans), a
first auto-encoder is learnt in an end-to-end fashion as proposed in Zhou et al.28. The A-Scans within each
volume are sampled from a Gaussian distribution, implying a higher chance for more centrally-located250

(clinically relevant) A-Scans to be part of the training subset. After training, only the encoder is used to
map the A-Scans of all volumes into the embedding space, yielding the A- Scan features for each A-Scan.
The individual A-Scans are processed independently from their position in and membership of any OCT
volumes.

Figure 3: Illustration of the local auto-encoder architecture AE1. Local features are learned using randomly sampled
A-Scans from OCT volumes. During training, A-Scans are reconstructed from the compact representation (20 dimensions).

4.5. Deep unsupervised learning of global features

The A-Scan features of each volume are normalized feature-wise (zero mean, unit standard deviation)
and concatenated according to their positions in the volume, yielding A-Scan feature volumes, reducing
the volume size 50 times from 512 × 128 × 1024 to 512 × 128 × 20. Based on this compressed represen-
tation, in the second part of our framework, a deep convolutional auto-encoder is trained from all 49,505
training volumes.260

This second auto-encoder AE2 is composed of one linear down-sampling layer, followed by five convo-
lutional ([64/64/126/256/512] channels) and three fully connected layers ([256/64/20] channels) on the
encoder side, and a mirrored structure on the decoder side, as depicted in Figure 4. All layers are followed
by the non-linear activation function ELU, and random-region dropout is applied to the input during
training [11]. Applying the encoder of AE2 on the A-Scan feature volumes yields a 20-dimensional global
feature vector for each volume.

4.6. Statistical analysis evaluation using correlation

For evaluation of the learned features, the treatment nave baseline study eye OCT of each patient
was used. Two different representations were selected as input for our quantitative evaluation:

• To enable a comparison with the same number of features, for each local A-Scan feature, the mean270

was calculated across the volume and used as feature representation of the OCT (20 dimensions).

• The global feature vector (20 dimensions).

We computed the Pearson correlation coefficient of the detected features with known markers, includ-
ing markers of visual function (BCVA, LLVA) [4], retinal morphology as conventionally measured from
OCT (retinal thickness, intra-retinal cystoid fluid, subretinal fluid, pigment epithelial detachment) and
measures of disease activity obtained by fluorescein angiography (total area of lesions, total area of
leakage) [18]. The correlation coefficients were computed utilizing the available information of all 1094
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Figure 4: Architecture of the global auto-encoder AE2. Encoding the local feature representation volume yields a compact
global feature embedding, representing the whole OCT volume in only 20 dimensions.

patients. Additionally, we conducted hypothesis tests to evaluate if the correlation coefficients were signif-
icantly different from zero. Since this an explorative study, we did not perform correction for multiplicity
testing in order not to increase the type II error (missing an effect that is present). Results are presented280

in Table 1 and Supplementary Table S1, where correlations with no significant difference from 0 are shown
greyed out.

4.7. Evaluation using machine learning regression

For the evaluation using regression models, the treatment nave baseline study eye OCTs described
above, where randomly divided into training and test set of 985 and 109 patients, respectively. We
trained a multivariate linear regression model to predict the above-mentioned known markers. Elastic
net regularization with 5-fold cross-validation was used to determine the optimal hyper-parameters (α =
[0.0010.010.10.30.50.70.91]). The performance of the final model was evaluated on the test set. For
comparison, conventional OCT markers obtained by supervised deep learning, as described in Section 2.5
(21 dimensions), were used as variables to predict visual function (BCVA, LLVA), using the same settings290

for the linear regression model as described above. To test if the difference between the regression models
(global features vs. conventional features) regarding the coefficient of determination was statistically
significant, we performed a one-sided Wilcoxon signed-rank test.

4.8. Training details

For the training of the fully connected and the convolutional auto-encoder, we used Adam optimizer
with standard parameters. For the former we used a learning rate of 0.0001, early stopping with a
maximum of 500 epochs, a minibatch size of 64 and dropout at the input level with a rate of 0.5. For
the latter we used a learning rate of 0.0001 for 10 epochs and 0.00001 for 2 epochs, a minibatch size of
8, random-region dropout-factor of 0.25 for the input and ordinary dropout in the first fully-connected
layer of AE2 with a factor of 0.5.300
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CHAPTER8
Discussion and Conclusion

“The ultimate ignorance is the rejection

of something you know nothing about,

yet refuse to investigate.”

– Wayne Dyer

In this �nal Chapter the presented work is summarized, including a discussion of the
methodology, �ndings, limitations and potential use in a broader context. First, we provide

an overview about the status quo as well as the potential of machine learning in general.
�erea�er, the contributions of this thesis are summarized and discussed. Finally, a review
of potential limitations of the presented methods and a discussion of possible future lines of
research concludes this Chapter.

8.1 The potential of machine learning

�e success of deep learning is based on various aspects such as the availability of ”big data”,
the computational capacity of modern hardware and the methodological development in
the �eld of of machine learning. Huge amounts of data do not provide knowledge on their
own, but rather need to be processed by appropriate machine learning algorithms in order
to exploit potential. In particular, deep learning is a powerful tool to transform data into
knowledge, since it can learn extremely complex functions directly from data, in an end-to-
end manner (Litjens et al., 2017), making it one of the critical tools to advance and practice
medicine (Obermeyer and Emanuel, 2016).

In medicine, various disciplines are a�ected by machine learning algorithms. In particular,
the potential to perform automated screening, classi�cation or prediction of deep learning
based approaches on large-scale biomedical image data has been demonstrated. For instance,
in Poplin et al. (2018) the risk of cardiovascular diseases has been predicted from retinal
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fundus photographs. Hospital admissions in emergency departments have been robustly
predicted from patient history and triage information in Hong et al. (2018). �e automatic
classi�cation of echo-cardiograms is another example regarding the application of deep learn-
ing in medicine (Madani et al., 2017). Moreover, machine learning has a remarkable potential
of improving healthcare in se�ings where medical or �nancial resources are limited, e.g. in
remote areas or third-world countries (Koch, 2018). In this context, automatic screening of
common diseases would be one promising area of application, including automated classi�-
cation of skin cancer (Esteva et al., 2017) or detection of diabetic retinopathy from fundus
photographs (Carson Lam et al., 2018, Gulshan et al., 2016).

Machine learning is expected to (1) increase diagnostic accuracy, (2) improve prognosis
and (3) displace much of the physicians work with respect to interpreting digitized images
by improvements in medical image analysis (Obermeyer and Emanuel, 2016). Doctors have
to handle enormous amounts of data in clinical medicine, with raising complexity of this
task due to increasing dimensionality of data (e.g. images) and new medical technologies. At
this point, machine learning will become an important tool for clinicians to understand their
patients (Obermeyer and Emanuel, 2016). However, the task at this stage is not to replace
but rather to support clinicians, which leads to the challenge of integrating these methods
into the clinical work�ow and existing structures (Koch, 2018).

In this context, machine learning methods that are based on supervised learning allow
to automatize the task of detecting speci�c lesions or to predict pre-de�ned outcome vari-
ables. While supervised deep learning methods can achieve human-level performance, they
require a large amount of labeled data, which are costly or sometimes unfeasible to obtain.
Additionally, they are restricted to a-priori known disease categories or lesions which limits
their exploratory power. At the same time, the discovery of e�ective new biomarkers is
important to improve diagnosis, treatment and management of patients in general. Here,
the development of appropriate machine learning approaches that allow for exploration of
medical imaging data without needing manual labels is crucial. �ese methods can help to
improve individual patient care by discovering new biomarkers, constituting a shi� towards
hypothesis-generation centered strategies.

8.2 Contribution

In this thesis we have presented several contributions for biomarker discovery in medical
images, focusing on investigating patient populations su�ering from age-related macular de-
generation (AMD). Although the application of the proposed approaches is not limited to this
disease, AMD is highly relevant due to the fact that it is the most common cause for severe
vision loss and blindness in industrialized countries. At the same time, the existing knowl-
edge gaps with respect to the pathogenesis of retinal diseases and the absence of e�ective
treatments for certain disease pa�erns necessitates the discovery of informative biomarkers.
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Moreover, biomarkers are needed to improve early diagnosis, optimize existing treatment
strategies and enhance the management of patients. As OCT provides non-invasive high-
resolution imaging of the retinal morphology, the investigation of this image data constitutes
a promising �eld of research to identify relevant new markers.

In the main part of the thesis, the potential of learning retinal features from large-scale
image data without manual labels was explored. New approaches for detecting anomalies and
categorizing new marker candidates have been proposed. We validated the discriminative
power of newly identi�ed marker candidates for the di�erentiation of separate disease stages,
showed the ability of Bayesian deep learning for anomaly detection and demonstrated the
improved predictive capability of learned features compared to conventional known disease
markers with respect to functional outcome measures. We elaborated three strategies to
identify new biomarker candidates in medical image data, which are summarized in the
following.

Unsupervised Identi�cation of Disease Marker Candidates in Retinal OCT Imaging
Data In Chapter 5, we presented an unsupervised approach to identify and categorize
disease marker candidates in retinal OCTs on pixel-level, based on anomaly detection and
subsequent clustering. A multi-scale autoencoder and a One-class SVM are trained on a set of
healthy training images to learn the distribution of normal appearance, allowing the detection
of anomalies on new images. �is can be viewed as a semantic segmentation approach, where
all pixels not in the healthy appearance distribution are classi�ed as abnormal. A subsequent
clustering step yields a categorization of the anomalies into sub-groups, serving as disease
marker candidates. �e evaluation results revealed comparable or superior performance to al-
ternative unsupervised feature learning techniques regarding the segmentation of anomalous
regions in OCT scans. We demonstrated that the model identi�ed stable categories that were
replicable across datasets. At the same time, the results showed that disease processes were
captured by the anomalous categories, suggesting that valuable discriminative information
is encoded in the found marker candidates, indicating their link to disease.
Clinical prospects: �is work has introduced a novel approach for unsupervised identi-
�cation of novel marker candidates and can serve as a hypothesis-generation strategy (cf.
Section 4). Since known biomarkers such as retinal thickness or macular �uid neither explain
the full spectrum of the disease nor the individual level of vision loss, this work is as a step
towards tools for a be�er understanding of retinal diseases, and therefore for enhanced pa-
tient care. A set of healthy training cases is the only requirement to enable the training of the
proposed unsupervised anomaly detection method. �is means that the approach is expected
to be broadly applicable to any type of lesion, disease or biomedical imaging data, since it
neither relies on lesion-speci�c annotations nor on pixel-wise or volume-wise classi�cation
labels.

103



Epistemic uncertainty of anatomy segmentation for anomaly detection in retinal
OCT A novel anomaly detection approach based on epistemic uncertainty estimations has
been presented in Chapter 6. A deep network is trained on a cohort of normal subjects to
segment the healthy anatomy, i.e. the layers of the retina. �e weak labels of the retinal
layers used for training the Bayesian deep learning model were generated using an auto-
mated method, taking advantage of the fact that traditional approaches are expected to work
accurately in a well-de�ned environment, i.e. in a set of healthy cases. In this way, infor-
mation about healthy anatomical appearance is injected into the model without the need
for manual annotations. �e usage of weak labels allows to produce more training data and
thereby to capture more healthy appearance variability. During test time, deviations from
normal anatomical variability are detected using epistemic uncertainty estimates, which are
expected to correlate with these anomalies not observed during training. �is is supported
by the results, showing a high correlation between the area of anomaly annotations and un-
certainty estimates. To obtain smooth binary segmentation maps of anomalies, the resulting
uncertainty maps are processed with a newly introduced majority-ray-casting technique. A
quantitative evaluation revealed that the proposed method clearly outperformed the unsu-
pervised baseline approach with respect to the segmentation of anomalous regions in retinal
OCT scans. �e importance of target labels that describe the healthy anatomy in an informa-
tive way is highlighted by results of ablation experiments, which demonstrated that using
less informative target labels (i.e. binary segmentation of the whole retina instead of its
individual layers) resulted in a decreased performance for anomaly detection.
Clinical prospects: In general, using weak labels to inject knowledge about healthy anatom-
ical variation into the model, combined with the power of Bayesian deep learning, o�ers an
e�ective tool for anomaly detection in biomedical imaging data. Since the detected anomalies
are either new biomarker candidates or known disease markers, the possible applications
are two-fold. In the �rst case, the marker candidates can be analyzed in a clinical post-hoc
analysis, which means that the anomaly detection model plays an important role regarding
hypothesis-generation. In the second case, the anomaly detection model can be utilized more
directly in a clinical se�ing to identify abnormal images, e.g. for screening. �e received
abnormality-scores for biomedical images could be used to select samples for a subsequent
revision by clinicians, referring cases with anomalies for further analysis. In both cases, we
expect the anomaly detection model to generalize well to all kind of diseases that alter the
anatomical appearance, not restricted to a speci�c pathology.

A paradigm shi� in retinal biomarker identi�cation by unsupervised deep learning
In Chapter 7, the focus is shi�ed from anomaly detection to unsupervised feature learning
in OCTs. �is constitutes a di�erent strategy in terms of biomarker discovery. In contrast
to anomaly detection, the target is not to learn the appearance of normal cases and detect
and analyze all deviations from normal, but instead learn the most prominent features from a
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large-scale population of diseased patients without labels, and analyze disease speci�c image
characteristics in the space of these features. �is not only omits the need for manual labels
of speci�c lesions or target classes, but also eliminates the requirement of collecting a set
of healthy cases, which can be challenging in some clinical se�ings. Moreover, the former
allows to explore the data in an unbiased way, since the learned features are not adjusted
towards a speci�c prediction task. In two separate stages, an auto-encoder based approach
is trained on a population of AMD patients to learn a low-dimensional representation of
the local morphology of the retina, as well as a global embedding of whole OCT volumes.
�is explicit division of the architecture into multiple stages allows to conduct analyses both
on a local A-scan and on a global volume level. A quantitative and qualitative evaluation
revealed that conventionally used biomarkers (e.g. retinal thickness) were captured by the
local features. �is demonstrates that our method is capable of identifying clinically mean-
ingful morphological information. In addition, the new local embedding also learned features
that had not been considered yet in clinical practice (i.e. features that form new biomarker
candidates), highlighting the potential of the proposed approach to generate new �ndings.
Moreover, the results showed that the learned global features outperformed conventional
OCT markers with respect to the task of predicting visual function in our AMD patient pop-
ulation.
Clinical prospects: Due to the high-dimensional property of three-dimensional OCT vol-
umes, the manual investigation of this data is an extremely complex task. At the same time,
analyzing large amounts of data and generating labels is costly or sometimes even unfeasible.
In contrast, the proposed method allows to automatically learn features from large-scale
imaging data without the need of manual annotations at multiple levels of granularity (lo-
cal and global features). For instance, one local feature that showed the highest correlation
with functional target variables (BCVA, LLVA), could be qualitatively linked with subreti-
nal hyperre�ective lesions, which are currently not used as endpoint in clincial trials. �is
demonstrates the potential of the proposed method to learn new marker candidates, exploring
the population of diseased patients in an unbiased way, without labels. �e global features
on the other hand allow to compress the complex morphological information of a 3D retinal
image volume into an extremely compact representation. �is o�ers a new perspective on
how to explore and make high-dimensional medical imaging data manageable in the near
future.

8.3 Future lines of research

Several lines of future research can be derived from the proposed methods, discussed in the
following.

105



Holistic versus isolated anomaly detection approaches for biomarker discovery �e
proposed unsupervised anomaly detection approaches allowed to identify categories of anoma-
lies (i.e. disease marker candidates) that encode discriminative information regarding disease.
However, the objective of identifying categories restrained the approach to a localized repre-
sentation that enabled clustering on a local level. �is in turn led to a limitation with respect
to the anomaly detection performance, which le� room for improvement. We tackled this
issue in our second work (Chapter 6) where we developed an approach focusing solely on
the task of anomaly detection. Recently, also other work (e.g. Schlegl et al. (2017)) has been
proposed to tackle the problem of anomaly detection as an isolated task. In general, the
identi�cation of disease marker candidates (as done in Chapter 5) constitutes a �rst step in
the process of biomarker discovery. Subsequently, a precise description of characteristics of
those candidates must be created. �is is necessary to enable a transformation from candi-
dates to e�ective markers applicable in clinical practice in a consecutive post-hoc analysis.
In this context, an open research question that remains is how to optimize the process of
biomarker discovery using anomaly detection. On one hand, considering anomaly detection
as an isolated task may limit the applicability of the developed method for the necessary
subsequent steps. Furthermore, tackling the individual steps separated from each other may
ignore the existing potential, lying in the fusion of multiple tasks. On the other hand, aiming
for a holistic approach of the biomarker discovery pipeline may restrain the individual com-
ponents from a methodological perspective. Since the anomaly detection performance was
substantially increased by the work presented in Chapter 6, future work could either aim at
integrating an anomaly categorization step directly into the model, or developing a separate
method that uses the outcome of the proposed approach as input.

De�nition of normal training set One advantage of the presented anomaly detection
methods is that they require only a set of healthy cases for training. �is omits the need for
costly large-scale manual annotations of a-priori de�ned lesions and increases the generaliz-
ability of the model to all kinds of diseases, since all deviations from normal are detected by
de�nition. Nevertheless, the performance of anomaly detection approaches can be limited by
the quality of the available healthy training samples. In connection with biomarker discovery,
it is important to ensure that no anomalies are present in the training set, since they would be
incorporated as normal appearance rather than being detected as anomalies. Moreover, the
training set should cover the entire spectrum of healthy appearance, as normal cases could
otherwise be erroneously detected as anomalous. Furthermore, in some clinical scenarios it
can be challenging to obtain a set of healthy cases, since medical image acquisition is usually
motivated by a certain clinical condition.

�antitative evaluation While the quantitative evaluation of anomaly segmentation re-
sults provides an objective measurement of performance, the explanatory power is limited.
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�is is caused by the fact that manually annotating anomalies is a di�cult task: transitions be-
tween healthy and diseased scans are continuous, hard to de�ne, o�en unclear and exposed to
subjective interpretation. Ensuring consistent ground-truth labels is therefore nearly impos-
sible, especially in the border regions of anomalous areas. For instance, a low precision value
may be the result of either normal appearance that has not been captured by the anomaly
detection model, or emerge from anomalies that have not yet been categorized as such in
the manual annotations and are potential new marker candidates. A careful evaluation is
therefore crucial. One way to tackle this limitation has been shown in Chapter 6, where a
lesion-wise evaluation score has been used to provide a more comprehensive view on the
model performance. �is kind of evaluation allowed to link quantitative pixel-based eval-
uation metrics with lesion-level detection capabilities. More generally, the assessment of
inter- and intra-reader variability constitutes an important step towards understanding the
complexity of the given task. Examining the variability of readers would therefore be another
interesting line of future research.

Unsupervised Representation Learning As mentioned above, the learned compact dis-
ease speci�c representation of a medical image allows to analyze the amount of information
contained in the images. We demonstrate that the obtained features correlate be�er with
clinically relevant measures of retinal function and disease activity than established biomark-
ers. However, since the features are learned without labels, they are quite general in the
sense that they capture only the most prominent characteristics of the dataset, i.e. the pa-
tient population. �is means that the model is prone to miss some features which are not so
prominent but are still important for a speci�c task at the same time. �is is related to one of
the main challenges in representation learning, namely the di�culty of establishing a clear
target to train the machine learning model (cf. Section 3.1.2). One possible solution would
be to �ne-tune the representation, training the network with a small subset of labeled cases
in a consecutive step. Another interesting research line would be to combine anomaly detec-
tion and representation learning: A�er detecting all anomalies in a �rst step, representation
learning is then conducted using only the abnormal regions. �is could facilitate the process
of discovering the underlying structure and characteristic of diseases.

Post-hoc analysis In general the analysis, evaluation and interpretation of marker candi-
dates remains challenging and complex. Since they do not correspond to known categories,
there exists no ground-truth for their direct evaluation. Instead, we conducted qualitative
evaluation by experts as well as correlation, regression and classi�cation experiments to
verify and investigate the nature of learned features, alias marker candidates. While quali-
tative evaluation allows an in-depth exploration of results but is time-consuming, the other
evaluation approaches can su�er from noise in the target labels (cf. Section 2.1.2) or may be
biased by the choice of the used target variable itself. In this context it seems all the more
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meaningful to ”decouple” the process of identifying new marker candidates from the evalua-
tion as much as possible, as this minimizes the bias towards established medical hypotheses.
In this thesis, we propose di�erent approaches that allow to explore data and identify new
biomarker candidates, but at the same time do not rely on prede�ned hypotheses, lesion-
descriptions or outcome variables. However, more work is needed in order to enhance the
process of biomarker discovery supported by machine learning methodology.

8.4 Conclusion

�is dissertation proposes new machine learning methods that tackle the problem of identi-
fying disease marker candidates in di�erent ways: (1) a novel anomaly detection approach
that identi�ed and categorized anomalies in an unsupervised way, (2) an anomaly detec-
tion method that is based on Bayesian deep learning, and (3) a completely unsupervised
feature learning approach that captures phenotype characteristics of the patient population.
Even though the methods were evaluated on a speci�c disease (AMD), we expect them to
generalize well to other retinal diseases. We believe that the published work represents a
step towards improving individual patient care by proposing new ways of identifying new
imaging biomarkers, using the abilities of machine learning.
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4. Orlando, J.I., Seeböck, P., Bogunović, H., Klimscha, S., Grechenig C., Waldstein, S.M., Gerendas, B.S.,
Schmidt-Erfurth, U. (forthcoming). U2-Net: A Bayesian U-Net Model with Epistemic Uncertainty Feedback
for Photoreceptor Layer Segmentation in Pathological OCT Scans.
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