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Machine Learning to Analyze the Prognostic
Value of Current Imaging Biomarkers in
Neovascular Age-Related Macular
Degeneration
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Purpose: To evaluate the potential of machine learning to predict best-corrected visual acuity (BCVA)
outcomes from structural and functional assessments during the initiation phase in patients receiving stan-
dardized ranibizumab therapy for neovascular age-related macular degeneration (AMD).

Design: Post hoc analysis of a randomized, prospective clinical trial.

Participants: Data of 614 evaluable patients receiving intravitreal ranibizumab monthly or pro re nata ac-
cording to protocol-specified criteria in the HARBOR trial.

Methods: Monthly spectral-domain (SD) OCT volume scans were processed by validated, fully automated
computational image analysis. This system performs spatially resolved 3-dimensional segmentation of retinal
layers, intraretinal cystoid fluid (IRF), subretinal fluid (SRF), and pigment epithelial detachments (PED). The
extracted quantitative OCT biomarkers and BCVA measurements at baseline and months 1, 2, and 3 were used to
predict BCVA at 12 months using random forest machine learning. This approach was also used to correlate OCT
morphology to BCVA at baseline (structure— functlon correlation).

Main Outcome Measures: Accuracy (R?) of the prediction models; ranking of input variables.

Results: Computational image analysis enabled fully automated quantitative characterization of neovascular
lesions in a large-scale clinical SD-OCT data set. At baseline, OCT features and BCVA were correlated with
R? = 0.21. The most relevant biomarker for BCVA was the horizontal extension of IRF in the foveal region,
whereas SRF and PED ranked low. In predicting functional outcomes, the model’s accuracy increased in a linear
fashion with each month. If only the baseline visit was considered, the accuracy was R? = 0.34. At month 3, final
visual acuity outcomes could be predicted with an accuracy of R = 0.70. The strongest predictive factor for
functional outcomes at 1 year was consistently the individual BCVA level during the initiation phase.

Conclusions: In this large-scale study based on a wide spectrum of morphologic and functional features,
baseline BCVA correlated modestly with baseline SD-OCT, whereas functional outcomes were determined by
BCVA levels during the initiation phase with a minor influence of fluid-related features. This finding suggests a
re-evaluation of current diagnostic imaging features and a search for novel imaging approaches, where machine
learning is a promising approach. Ophthalmology Retina 2018;2:24-30 © 2017 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyretina.org.
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Intravitreal anti—vascular endothelial growth factor (anti-
VEGF) therapy is the current standard of care for neo-
vascular age-related macular degeneration (AMD).' In the
pivotal clinical trials, patients receiving anti-VEGF treat-
ment gained on average 1 to 2 lines in best-corrected visual
acuity (BCVA) from baseline at 1 year of therapy.””
However, the functional response to treatment on an indi-
vidual patient level is markedly heterogeneous and difficult
to predict clinically. For instance, in the large-scale
Comparison of AMD Treatments Trials, at year 1, roughly
30% of patients showed a BCVA gain of 3 lines or more,
whereas about 10% of patients experienced a BCVA loss of
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1 line or more.” Therefore, to counsel patients appropriately,
and also to provide more reliable end points for clinical
trials, identification of precise and robust methods to
predict BCVA outcomes on an individual patient level
represents an important goal of research.

Extensive research efforts have been directed at the dis-
covery of structural parameters (“imaging biomarkers™) that
would allow a more accurate functional prognosis in the
management of neovascular AMD.” In general, the BCVA
level at baseline has become an established prognostic
factor for functional gains and final BCVA outcomes.’
Although patients with higher initial BCVA achieve, on
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average, less relative BCVA gain than individuals with
pronounced pre-existing BCVA loss (a phenomenon
known as the “ceiling effect”), best absolute BCVA out-
comes are observed in patients with high baseline BCVA.
Concerning imaging biomarkers with relevance for vision
outcomes, mainly OCT-based features such as the presence
and extent of intraretinal cystoid fluid (IRF) or photore-
ceptor signal loss have been demonstrated to correlate with
BCVA outcomes, along with other markers such as size of
the choroidal neovascularization (CNV) lesion on fluores-
cein angiography.®’

Machine learning is a subfield of computer science that
constructs automated algorithms to empirically recognize
pathognomonic and prognostic patterns in large-scale
multivariable datasets, rather than relying on predefined
hypotheses.® The spectrum of potential variables extracted
from different morphologic and functional data sources is
therefore unlimited. Methods from this field of artificial
intelligence are currently introduced into ophthalmology in
a pioneering effort to predict recurrence of disease or
therapeutic needs in anti-VEGF therapy, to predict pro-
gression in atrophic AMD, but also to construct realistic
segmentation algorithms for morphologic features.” "'

The aim of this study is to introduce machine learning
methodology to, first, correlate morphologic OCT parame-
ters at baseline to the corresponding visual function in active
neovascular disease; and second, predict final BCVA levels
after 1 year of standardized anti-VEGF therapy from func-
tional and structural parameters acquired during the initia-
tion phase in a large-scale randomized clinical trial setting.

Methods

In this post hoc analysis of a comprehensive clinical trial database,
prospectively collected BCVA data and spectral-domain (SD)

OCT ima§es of patients enrolled in the HARBOR trial were
included.'” The study was conducted in compliance with the
Declaration of Helsinki. Approval was obtained by the Ethics
Committee at the Medical University of Vienna as well as at
each participating center for the HARBOR trial. Patients
provided written informed consent for inclusion into the
HARBOR trial. The HARBOR trial is registered at
clinicaltrials.gov (identifier NCT00891735).

Study Design and Inclusion and Exclusion
Criteria

The study design and main outcomes of the HARBOR trial have
been published previously.'? In brief, patients with treatment-naive
subfoveal CNV secondary to AMD as diagnosed by a retina
specialist using fluorescein angiography and SD-OCT were
included. Eligibility for the study was confirmed by a central
reading center. Patients had to be aged 50 years or older and
were eligible if BCVA was between 20/40 and 20/320 (Snellen
equivalent). At baseline, all patients were randomized 1:1:1:1 to
receive intravitreal ranibizumab 0.5 mg monthly, ranibizumab
0.5 mg pro re nata (PRN; after a 3-monthly initiation phase),
ranibizumab 2.0 mg monthly, or ranibizumab 2.0 mg PRN. At each
monthly visit, patients underwent BCVA testing using Early
Treatment Diabetic Retinopathy Study (ETDRS) charts by certified
examiners after formal refraction. SD-OCT was performed by
certified operators using the Cirrus HD-OCT III instrument
(Carl Zeiss Meditec, Dublin, CA), having 512 x 128 x 1024
voxels with a size of 11.7 x 47.2 x 2.0 um"”, covering a volume of
6 x 6 x 2 mm’.

Computational Image Analysis

Of the HARBOR dataset (n = 1095), 70% were randomly
selected for analysis. The remaining 30% were kept for future
studies. All SD-OCT images from baseline to month 3 underwent
a standardized analysis for imaging biomarkers at a certified
reading center (Vienna Reading Center, Vienna, Austria).
A validated, fully automated computational image analysis
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Figure 1. Image analysis pipeline. IRF = intraretinal fluid; PED = pigment epithelial detachment; SRF = subretinal fluid.
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pipeline was used to process SD-OCT data (Fig 1). First,
SD-OCT volumes were preprocessed using motion artifact
removal to reduce image artifacts caused by saccadic and
anterior—posterior  eye  motion  during  acquisition.'?
Subsequently, fully automated segmentation algorithms based
on graph theory and convolutional neural networks were
applied to delineate the retinal layers and the CNV-associated
lesion components, IRF, subretinal fluid (SRF), and pigment
epithelial detachment (PED) (Schlegl T, Waldstein SM, Bogu-
novic H, et al. Fully Automated Detection and Quantification of
Macular Fluid in Optical Coherence Tomography using Deep
Learning, submitted for publication).'"* Segmentation of fluid-
filled layers, including total retinal thickness, IRF, SRF, and
PED, resulted in 4 morphologic maps (Fig 2). To define the
extension of the feature vector, the macular retina was divided
into 9 areas according to the ETDRS grid. Locations included
the foveal area and 4 parafoveal as well as 4 perifoveal areas
for the nasal, temporal, superior, and inferior quadrants (Fig 2).
The resulting wide range of quantitative structural variables
(Table 1, available at www.ophthalmologyretina.org) was
stored in a modeling database for subsequent machine learning.

Structure—Function Correlation using Machine
Learning

To evaluate the relevance of the quantified SD-OCT features for
visual function at baseline, where the variability in OCT
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morphology is greatest, a random forest regression model was
trained using SD-OCT imaging biomarkers listed in Table 1 as
input features and BCVA at baseline as a target variable.'> The
random forest was grown with 500 trees, for which it was
empirically observed that the out-of-bag error had converged.
The relative importance of the individual input variables for the
prediction was evaluated by permuting the values of each input
variable and measuring any decrease in the prediction accuracy
of the model. Thus, the input variables are ranked according to
their individual value for an accurate prediction.

Prediction of Visual Outcomes using Machine
Learning

Supervised machine learning regression using random forests was
applied to predict BCVA at 12 months (target variable) from the
input variables listed in Table 1. Separate models were constructed
for the visits at baseline and at month 1 to month 3. The
ranibizumab dose and treatment regimen were included in the
model as fixed effects.

Statistical Analysis

This was an exploratory post hoc analysis of a comprehensive and
prospective clinical trial database. Hence, no formal hypotheses
were made and no P values are reported. The goodness of fit of the
predictive models was evaluated by comparing the R? of the

Parafovea
Temporal

Figure 2. A, Example of the OCT images and corresponding segmentations of total retinal thickness (TRT), intraretinal fluid (IRF), subretinal fluid (SRF),
and pigment epithelial detachment (PED) displayed as en face feature maps. B, Spatial localization of the features based on the Early Treatment Diabetic

Retinopathy Study grid.
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models. All models were evaluated using a fivefold cross-
validation strategy.

Results

Patient Disposition

After removal of patients showing incomplete data during the
initiation phase and/or segmentation errors, data of 614 eyes were
included into the current analysis, comprising a total of 2456
SD-OCT volumes for analysis. Descriptive statistics of individual
CNV lesion characteristics as per automated image analysis are
provided in Table 2 (available at www.ophthalmologyretina.org).

Structure—Function Correlation using Machine
Learning

At baseline, the random forest regression model was used to pre-
dict the corresponding level of BCVA from the extracted
morphologic imaging biomarkers, resulting in an accuracy of
R?> = 021. A scatterplot of predicted vs. ground truth
(i.e., measured BCVA) is shown in Figure 3. The root mean square
error was 11.4 letters. The resulting ranking of feature importance
was led by the feature IRF and demonstrated that the horizontal
extension of IRF in the central 1-mm and 3-mm foveal area, as
well as IRF volume in the central 1 mm, conveyed the highest
predictive power for concomitant BCVA, followed by total retinal
thickness (Fig 3). Importantly, parameters quantifying SRF and
PED did not contribute to baseline BCVA in a relevant manner,
irrespective of their macular location.

Prediction of Visual Outcomes using Machine
Learning

At baseline (i.e., before treatment initiation), the regression model
including functional and anatomic data predicted BCVA at
12 months with an accuracy of R = 0.36 and a root mean square
error of 12.9 letters. The most relevant features for outcome pre-
diction included baseline BCVA, followed by IRC area and vol-
ume (Fig 4). Scatterplots of predicted vs. ground truth BCVA from
month 0 to month 3 are shown in Figure 4. The accuracy of
prediction increased with each month into the initiation phase.
At month 3, the model demonstrated the highest predictive
power with an R? = 0.70 and a root mean square error of
8.6 letters. For the prediction of functional outcomes, the last
measured BCVA during the initiation phase was by far the most
important predictive factor, and this was consistent throughout
each interval during the initiation phase. Morphologic variables
ranked significantly lower at each individual month during the
initiation phase, and this also applied to IRF, identified as the
leading morphologic feature in structure—function correlation at
baseline.

Discussion

The ability to transform data into knowledge using machine
learning will progressively disrupt clinical medicine.”
Machine learning will dramatically improve diagnostic
accuracy and the ability of health professionals to
establish a prognosis, as well as support clinical decision

making. Current prognostic models rely on a handful of
qualitative variables restricted to specific morphologic
characteristics ~ recognized in  previous  clinical
observations, which may be subject to pre-existing bias.
Machine learning, conversely, approaches diagnostic and
prognostic problems by extracting rules from data. Starting
with patient-level observations, algorithms sift through vast
amounts of features, looking for hallmarks that reliably
predict outcomes.

Large-scale clinical trials in retinal pharmacotherapy
provide structured datasets supporting generation of proof
of principle for machine learning methods and their
breakthrough potential in modern ophthalmology. With
the advent of 3-dimensional raster scanning in SD-OCT
the age of “big data” has clearly reached ophthalmic
research. Image datasets as large as the one investigated
here defy manual inspection and analysis by clinicians and
also by specialized reading centers. Automated computa-
tional analysis of retinal imaging data promises an effi-
cient and more refined mode of analysis and opens a
window of opportunity in biomarker research.'® The
utility of big data analysis covers the most important
tasks in medicine overall, which are to anticipate,
prevent, and treat disease in an optimal way for each
individual patient. The HARBOR trial offers an
exceptionally suitable dataset for machine learning
because of its large sample size, standardized high-
resolution SD-OCT imaging, and well-designed and
well-executed treatment protocol.

In the study presented herein, a random forest regres-
sion algorithm was used to predict the development of
BCVA at 1 year based on the initial therapeutic response
known to exert the most substantial impact on disease
morphology and visual function. The correlation between
predicted and ground-truth 12-month BCVA scores was
loose at baseline. At month 3, by contrast, the individual
visual acuity levels reached a solid predictive power for
BCVA outcomes at month 12. Despite input of a huge
volume of precise spatiotemporal morphologic variables
vastly exceeding that of previous statistical analyses,” '
our study indicates that the individual longer-term BCVA
outcome in neovascular AMD therapy is strongly depen-
dent on the initial BCVA response to treatment. BCVA at
month 3 represented by far the strongest predictive factor
in the machine learning models and explained 70% of the
variability of BCVA development between month 3 and
month 12. Morphologic features, despite a comprehensive
and disease-specific characterization of imaging variables,
were found to be largely irrelevant for BCVA outcome in
neovascular disease. Noteworthy, the analyses of retinal
features included classifications beyond any feasible
diagnostic evaluation in clinical routine.

The study of “imaging biomarkers” has become an
important field of research, with several post hoc analyses
of large clinical trial datasets providing highly relevant
data.” Our analysis of the HARBOR dataset aims far
beyond previous studies by using innovative computer
science technology, which generates knowledge in a
data-driven way rather than focusing on pre-existing hy-
potheses.® In the machine learning approach, a multitude of
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Figure 3. Structure—function correlation using machine learning at
baseline. A, The goodness of fit of the prediction model was R?=0.21.B,
Ranking of the 15 most predictive features according to measured impor-
tance. BCVA = best-corrected visual acuity; IR = inner retina; IRF =
intraretinal fluid; ONL = outer nuclear layer; TRT = total retinal
thickness.

features are recorded and a comprehensive search for
correlations is performed. In our analysis, distinct
morphologic features such as total retinal thickness and
3-dimensionally quantified IRF, SRF, and PED were
screened in a differential manner, with the exact localiza-
tion and time course of each feature included as well. Our
data are, in general, consistent with previous studies in
identifying baseline and/or month 3 BCVA as the most
important individual variables for long-term BCVA out-
comes based on extensive human expertise and man-
power.'”"?" Nevertheless, even throughout this phase of
most intensive morphologic responsiveness, imaging bio-
markers obtained by high-resolution SD-OCT showed only
a limited predictive value, ranking far inferior compared
with the predictive power of BCVA as an obvious func-
tional biomarker. The Comparison of AMD Treatments
Trials group performed a post hoc analysis of macular
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morphology and visual acuity and described solid associ-
ations between VA and morphologic features such as
foveal IRF, abnormally thin retina, and SRF through years
1 and 2.°*' The group also concluded, in another analysis,
that the visual acuity response at week 12 is more predic-
tive of 2-year vision outcomes than either several baseline
characteristics (including total foveal thickness and eleva-
tion of the retinal pigment epithelium) or week
4 1resp0nse.22

With respect to the impact of morphologic parameters on
visual function from the structure—function correlation at
baseline (i.e., before any therapeutic change has occurred), the
machine learning methods used in our study are clearly putt-
ing the relations in adequate proportion. In treatment-naive
disease, BCVA correlated to SD-OCT parameters with an R?
of 0.21. Our data imply that the classical exudative features
such as fluid within and underneath the retina, as well as PED,
may have limited value in explaining visual function in neo-
vascular AMD, and they may not be informative in modifying
the individual visual prognosis. This finding should trigger the
search for additional morphologic markers that may not be
fluid-related, such as a disruption of the external limiting
membrane, the integrity of the inner and outer photoreceptor
segments, or subretinal fibrosis and RPE atrophy.”** Other
imaging modalities complementary to SD-OCT may be
required to identify features of relevance, such as fundus
autofluorescence or polarization-sensitive OCT.””*® Inter-
estingly, though, in the machine learning model, the hori-
zontal extension of IRC in the foveal area was the most
important predictor of BCVA, which corroborates the find-
ings of a previous study of our group.”’ In our previous
analysis based on manual segmentation, the predictive
importance of IRF on BCVA was larger, which may be a
consequence of a smaller sample size.

As baseline BCVA is a critical predictor of later BCVA,
early diagnosis and treatment initiation is of overwhelming
importance and may matter more than a sophisticated
morphologic analysis of established disease. The important
impact of disease duration and time to first treatment has
been studied globally,”*” uniformly suggesting better
outcomes with earlier detection and better initial BCVA.*
As the incidence of fellow-eye conversion toward neo-
vascular AMD is as high as 20% in 2 years, second-eye
screening is mandatory to preserve function in a better-
seeing eye.’

This study is limited in its retrospective nature, which
can cause selection bias. However, the inclusion of a
random sample of the complete population of a random-
ized controlled trial conferred some of the strengths of a
prospective study. Several retinal structures were auto-
matically analyzed to provide a comprehensive character-
ization of CNV lesions. However, some important
structures with known relevance for BCVA, such as the
integrity of the ellipsoid zone and the external limiting
membrane, were not considered because of the lack of
broadly available automated segmentation methods for
these structural features.’”

In conclusion, this study introduces machine learning to
evaluate the impact of classic fluid-based morphologic fea-
tures in neovascular AMD on BCVA and, furthermore, to
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Figure 4. Prediction of best-corrected visual acuity (BCVA) at 12 months from (A) MO, (B) MO—M1, (C) MO—M2, and (D) M0—M3.

predict BCVA after 1 year of anti-VEGF therapy in a large
standardized dataset. When functional and structural pa-
rameters obtained during the initiation dose were used for
outcome prediction, individual BCVA scores show by far
the highest predictive values for visual acuity at month 12,
explaining as much as 70% of variability. Among
morphologic features, the horizontal IRC extension in a
foveal location ranked highest in determining visual func-
tion in treatment-naive neovascular AMD, but no currently
used fluid-based morphologic feature showed any relevant
role for prediction of the therapeutic response. The clinical
utility of artificial intelligence methods such as machine
learning in screening, anticipating, and treating disease is
extremely promising and will largely enhance the under-
standing of the pathophysiology of retinal disease. Adequate
algorithms detecting specific functionally relevant morpho-
logic features, likely unrelated to the secondary leakage
phenomena, must be developed to better understand AMD
disease and therapeutic outcomes.
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