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1 Purpose

Major causes of blindness in developed countries are retinal vascular diseases,
essentially neovascular age-related macular degeneration (AMD) [1, 2], retinal
vein occlusion (RVO) and diabetic maculopathy (DMP). Automated computer-
aided detection and diagnosis (CAD) systems capable of detecting, classifying
and quantifying the characteristics of the pathology associated with these reti-
nal diseases is highly beneficial in the diagnosis, treatment prediction and the
assessment of treatment progression [3]. Among others, the presence of retinal
cysts are an important biomarker in AMD and RVO, thus their detection and
segmentation is beneficial to clinical disease analysis. Optical Coherence Tomog-
raphy (OCT) imaging has the ability to visualize and analyze the morphology of
the retina, as well as its abnormalities [4,5]. Due to the technological advances in
OCT imaging with regard to imaging speed, image quality, and functional analy-
sis, OCT is rapidly becoming one of the main imaging modalities used in clinical
practice, and for the quantification and analysis of disease-specific biomarkers
such as cyst volume. In this work we propose a fully automatic CAD system for
retinal cyst segmentation in OCT volume scans. The system is capable of detect-
ing cysts in OCT volumes acquired with OCT scanners from different vendors,
for which the amount of noise, image quality and contrast varies strongly.

2 Materials and Methods

2.1 OCT Data

For this study a total of 30 OCT volumes, containing a wide variety of retinal
cysts together with manual cyst delineations, were provided by the OPTIMA
cyst segmentation challenge. The resolution and density of the volumes vary
from 512x496 to 512x1024 and 49 to 128 B-scans, respectively. The challenge
data consists of a training data, stage 1 testing set and stage 2 testing set with
15, 8 and 7 scans, respectively. At the current time point only the training set,
containing 15 scans, has been made available. The scans were acquired using
four different OCT scanners. An overview of the dataset is shown in Table 1. To



Table 1. Challenge dataset

Set Spectralis Cirrus Topcon Nidek Total

Training 4 4 4 3 15

Testing 1 2 2 2 2 8

Testing 2 2 2 2 1 7

analyze the performance of the system in the absence of the dedicated test set,
we split the provided training data into a training and a validation set, which
will be used for later performance evaluation. The validation set is formed of one
randomly selected scan from each OCT vendor (4 scans in total).

2.2 Overview of CAD Pipeline

The pipeline of the CAD system is visualized schematically in Figure 1 and
follows a two-stage approach. In the first stage, multiple convolutional neural
networks (CNNs) [6] are used to obtain a segmentation at different image scales.
In the second stage, the individual scale segmentations are merged, redefining
the borders of the segmented cysts by combining local information obtained with
the lower scale network with contextual information obtained from the higher
scale networks [7].
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Fig. 1. Two-stage proposed cyst segmentation approach based on multiple scales
CNNs: In the first stage every B-scan is processed at three different scales with an
increasing contextual window. In the next stage, the segmentations obtained from each
scale are fused to obtain the final segmentation.

2.3 First stage: Multiple scale segmentation

Three different CNNs are independently trained at different scales to predict
the label of a single pixel as belonging to a cyst or background by considering a
certain region around the pixel of interest. Using a small neighbourhood results in
a sharp delineation of the boundaries of the cyst but also in many false positives,
even in regions outside the retina. Using increasingly larger regions around the
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Fig. 2. Schematic overview of individual convolutional neural network architecture.

pixel, i.e. larger scale, spatially distant information is included and a rough but
accurate delineation of the cysts is obtained. By combining the higher scales,
which are responsible for the localisation of cysts, with the lower scales, which
are focused on refining the borders of the cyst, an accurate cyst delineation is
obtained [7].

Network Architecture Each network is an individually trained deep convo-
lutional neural network, comprised of eight convolutional layers based on the
Oxfordnet [8] architecture which only uses 3 × 3 filters. An overview of the
network architecture is shown in Figure 2. The input of the first layer is a 2-
dimensional image patch extracted from the OCT volume centered on the pixel
to be evaluated. The size of the patches is 21 × 21, 41 × 41 and 81 × 81 for the
three different networks, respectively. After every convolutional layer, the result-
ing feature maps are passed through a non-linear mapping (RELU). Spatial 2
by 2 pixels max-pooling with a stride of 2 pixels was applied prior to the first
convolutional layer for the network using the 41 × 41 patches. Similarly, for the
network processing the 81 × 81 patches, spatial 4 by 4 pixels max-pooling with
a stride of 4 was applied. Max pooling functions are applied as a downsampling
operator on the input patch, keeping the size of the feature maps and number
of system parameters manageable.

Training the System A set of 4400000 million patches per scale were ran-
domly extracted from the training data, i.e. 200000 positive and 200000 negative
patches per OCT volume. Patches labeled as cyst were sampled with replacement
to obtain a balanced distribution of classes. Network parameters were optimized
during the training phase of the network using stochastic gradient descent. The
networks for each scale were trained independently, without parameter sharing
or pretrained initializations, in order to discern distinct features for each scale.



After training the networks on patch level, the three networks are convo-
lutionalized [7] by transforming the fully connected layers into convolutional
layers, in order to obtain a classification over a whole OCT volume in a sin-
gle pass through the network and speed up the classification process. As the
networks operating at higher scales include a downsampling step, in-network
bilinear upsampling is performed before combination to obtain a full resolution
output.

2.4 Second stage: Multiscale fusion

After the first stage a pair of probabilities per scale and per pixel are obtained,
indicating the confidence of that pixel belonging to a cyst and to the background,
respectively. A combination of these confidence scores is used to obtain a final
classification score. We first create a binary segmentation for every scale by
subtracting the two probability scores per pixel, and subsequent thresholding.
We optimized the threshold based on the average dice score over the training
data. Finally, we combine the binary segmentation maps of the three scales by
applying an AND operation.

2.5 Postprocessing

In order to discard detected regions outside the retina we remove detections
outside the delimiting retina layers. These layers are detected by applying the
Iowa Reference Algorithms (Retinal Image Analysis Lab, Iowa Institute for
Biomedical Imaging, Iowa City, IA) to find the boundary of the inner limiting
membrane (ILM) and the Boundary of myoid and ellipsoid of inner segments
(BMEIS) [9–11]. Only detections within these two boundaries are being consid-
ered as cysts. Additionally, we remove regions smaller than the minimum cyst
size in the training set in order to discard spurious detection due to noise. A
hole filling algorithm based on connected component analysis is finally applied
to fill holes in binary segmentations without affecting the outer border of the
segmented cyst.

3 Results

As only the training dataset has been released at the current timepoint, the
validation set was used for performance evaluation. The provided manual cyst
delineations by two human graders were used as reference standard for validation.
The Sorensen dice coefficient [12] is used to asses the performance.

The first two columns of Table 2 give an overview of the dice coefficients
obtained by the proposed system and calculated over the entire OCT volume
when compared to graders 1 and 2, respectively. The third column shows the
performance of the system compared to the delineations performed by the in-
tersection of the two graders. To give an indication of human performance, the
third column indicates the dice coefficient between the two graders, as a measure



Table 2. Dice coefficients of the obtained cyst segmentation for the entire volume.

OCT Traindata Dice Dice Dice Inter-rater

Obs1 Obs2 Obs1 ∩ Ob2 variability

Cirrus 1 0.696 0.717 0.613 0.691

Cirrus 2 0.853 0.845 0.821 0.887

Cirrus 3 0.644 0.612 0.568 0.762

Nidek 1 0.784 0.743 0.698 0.813

Nidek 2 0.784 0.760 0.701 0.818

Spectralis 1 0.729 0.763 0.679 0.797

Spectralis 2 0.841 0.845 0.814 0.905

Spectralis 3 0.726 0.752 0.652 0.682

Topcon 1 0.636 0.629 0.561 0.681

Topcon 2 0.541 0.542 0.471 0.678

Topcon 3 0.780 0.744 0.742 0.851

Average 0.728 ±0.09 0.726±0.09 0.665±0.10 0.778±0.09

OCT Testdata

Cirrus 4 0.424 0.380 0.422 0.650

Nidek 3 0.284 0.266 0.220 0.662

Spectralis 4 0.644 0.674 0.633 0.831

Topcon 4 0.516 0.524 0.520 0.813

Average 0.469±0.15 0.461±0.18 0.448±0.18 0.739±0.09

of inter-rater variability. The same analysis has been performed for the central
3 mm region of the retina. These results are shown in Table 3. On average, the
result on the training set (0.728 and 0.742 for the results in the entire volume
and inside the 3mm region, respectively) is approaching the performance of the
graders (0.778). The average dice coefficient on the validation set is 0.469. When
comparing to the intersection of the two independent graders, a slight drop in
performance can be observed for all images, obtaining an average score of 0.665
and 0.448 for the training and validation images, respectively. Additional sensi-
tivity analysis was performed on the system, with resulting sensitivities of 0.900
(±0.093) and 0.57(±0.175) for the training and validation set, respectively.

4 Discussion

A CAD system for a fully automatic vendor independent segmentation of cysts
based on OCT images was presented in this paper. The method used a com-
bination of CNN predictions at different scales in order to provide an effective
method to include contextual information for pixel classification. In order to al-
low a dense prediction for a full OCT volume, an efficient implementation using



Table 3. Dice coefficients of the obtained cyst segmentation within the central 3mm
diameter retinal region.

OCT Traindata Dice Dice Dice Inter-rater

Obs1 Obs2 Obs1 ∩ Ob2 variability

Cirrus 1 0.705 0.726 0.622 0.771

Cirrus 2 0.854 0.845 0.821 0.941

Cirrus 3 0.714 0.687 0.594 0.811

Nidek 1 0.786 0.746 0.70 0.918

Nidek 2 0.801 0.772 0.772 0.922

Spectralis 1 0.730 0.764 0.680 0.850

Spectralis 2 0.841 0.845 0.814 0.940

Spectralis 3 0.727 0.752 0.572 0.707

Topcon 1 0.650 0.643 0.238 0.394

Topcon 2 0.569 0.568 0.509 0.786

Topcon 3 0.785 0.779 0.746 0.930

Average 0.742 ±0.08 0.738±0.08 0.638±0.16 0.815±0.16

OCT Testdata

Cirrus 4 0.454 0.403 0.257 0.539

Nidek 3 0.378 0.347 0.294 0.857

Spectralis 4 0.654 0.684 0.638 0.883

Topcon 4 0.517 0.525 0.521 0.873

Average 0.500±0.12 0.489±0.15 0.428±0.18 0.788±0.16

convolutionalization was applied, reducing the classification time dramatically.
Figure 3 shown an example of the segmentation process for two different OCT
scans. It can be observed that the network trained at larger scale accurately
localizes the cysts, but due to the large contextual window, the accuracy near
the cyst borders is low. The two lower scales achieve a more accurate border
delineation but the amount of false positives increases substantially. The com-
bination of the different scales provides a good trade-off between accurate cyst
segmentation and number of false detections.

The system was trained and evaluated on a very small set of images, which
makes it difficult to generalize to new unseen images. It can be observed that
the performance of the system is highly dependent on the OCT scanner used to
acquire the scan. The performance of the system when applied to higher quality
OCT images, like those obtained by the Spectralis and the Topcon scanners, is
substantially higher than those obtained using scans from the Cirrus and Nidek
scanner. Specially, low performance was obtained for the Cirrus scan included in
the validation set. This can be explained due to the small size of the manually
segmented cysts on this volume. Dice coefficient measurements are highly sensi-



(a) Input B-scan (b) Input B-scan

(c) Output of the large scale network (d) Output of the large scale network

(e) Output of the medium scale network (f) Output of the medium scale network

(g) Output of the small scale network (h) Output of the small scale network

(i) Combination of the three scales (j) Combination of the three scales

Fig. 3. Intermediate and final output of the proposed method (red regions) a Spectralis
(left) and a Topcon (right) B-scans. In the last row, green indicates false negative
regions annotated by both observers.



tive to a over/under-segmentation of small regions, having a detrimental effect
on the final result. When limiting the analysis to the central 3 mm region of the
retina, the performance increases for all scans (see Table 3). A more accurate
result is needed for this central region as the presence of any abnormality within
this area is correlated with a higher risk of vision loss.

The combination of the different scales was performed using a logical com-
bination of the outputs. Although this provides a simple, fast approach, a more
sophisticated fusion step using a additional CNN might help in reducing the
over/under-segmentation errors. This approach, together with parameter shar-
ing training, will be investigated in future steps.
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