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Abstract. We propose a fully automated algorithm to outline cyst locations on 

3D spectral domain optical cohorence tomography (SD-OCT) data acquired 

across different vendors. A set of 34 quantitative features are automatically 

extracted for each voxel in the data, describing its location, intensity, thickness, 

and histogram statistics within the retinal layer where it is placed, as well as 

information in neighboring voxels. This set of features is used to train a model 

that outputs a score representing the probability that the voxel is part of a cyst, 

using machine learning techniques and a multiple resolution approach. The 

obtained scores are startified by an adpative threshold and further refined by 

morphological operations to indicate the presence or absence of cyst in each 

voxel. Evaluation in 15 3D SD-OCT datasets acquired using 4 different vendors 

in a leave-one-out cross validation scenario, yielded promising results when 

compared to manual outlines drawn by two readers. 
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1  Introduction 

Retinal cysts are a pathological consequence of several common ocular diseases such 

as retinal diabetic retinopahy, retinal vein occlusion, ocular inflammation and age-

related macular degeneration [1,2]. The presence, location, and extent of cystoid mac-

ular edema may act as disease biomarkers, thus their volumetric quantification may be 

beneficial to disease analysis, patient-tailored treatment and treatment progress as-

sessment, in a similar manner that other structures observed in spectral domain optical 

cohorence tomography (SD-OCT) (e.g. drusen) have proven to be useful [3]. Cyst 

volumes can be manually calculated using SD-OCT [4], but the large amount of im-

aging data produced in a single SD-OCT volume makes manual assessment extremely 

laborious, challenging, and prone to differences in subjective interpretation; hence, 

there is a need for an automated segmentation algorithm to efficiently assess cyst 

characterization in SD-OCT volumes in an objective manner. 



A number of segmentation algorithms have been proposed to date to identify 

cystoid macular edema and similar closed-contour anomalies like fluid-filled regions 

and symptomatic exudate-associated derangements [5-12]. However, to our 

knowledge, none of the previous methods have been developed to work fully 

automatically and independently of the SD-OCT device used. Most of the previous 

methods rely on obtaining a coarse result (by either thresholding [6] or using 

intensity, texture and gradient properties in 2-dimensional B-scan images [9]) to set a 

baseline for later refinement using level-set approaches and morphological operations 

[12]. In these approaches, the global parameters, set experimentaly, could present 

limitations when evaluated in images obtained from different vendor devices, where 

intensity statistics across different intraretinal layers are expected to vary greatly from 

manufacturer to manufacturer. In order to solve these previous limitations, we 

describe a fully automated method to segment cystoid macular edema in SD-OCT 

images across different manufacturers. The novelty of our method lies in employing 

machine learning techniques in a multiresolution approach, using quatitative imaging 

features directly extracted from the SD-OCT data. A set of novel features are 

extracted for each voxel location representing not only information about its intensity, 

but also its relative position, intensity statistics and axial thickness within each 

particular intraretinal layer, as well as information in neighboring pixels and location 

relative to the foveal pit center.   

2 Methods 

A diagram of our automated segmentation approach is displayed in Figure 1, where a 

description of the coordinates and nomenclature of the SD-OCT data is also shown.  

 

Fig. 1. Diagram of steps in the automated cyst segmenteation method. 



Our method is based in machine learning techniques, where a model is trained 

using manual markings (to establish the ground truth) and then tested on unseen data. 

As preprocessing steps, the SD-OCT data are first normalized and denoised using 

non-local means filtering [13] (radii of the search windows t = (14 µm, 82 µm),  f = (6 

µm, 35 µm) in the axial and horizontal direction, filtering degree h = .008). Ten 

boundaries indicating the axial location of defined intra-retinal layers are then 

automaticaly outlined using a developed segmentation algorithm (SOARS: Stanford 

OCT Automated Retinal Segementation) [14], from which 7 (describing 6 layers) are 

considered in the analysis. A set of quantitative features are then extracted to 

characterize each voxel located between the segmented internal limiting membrane 

(ILM) and inner segment junction (IS), where we expect the possible cysts to appear. 

These features describe voxel loaction within each segmented boundary, intensity 

value, axial thickness within the retinal layer where it is located, and restricted 

summed voxel projection (RSVP) [15] statistics within this layer, as well as neighbor 

information. The set of features are then expanded using a multiresolution approach 

[16] at 4 possible resolutions to form a set of predictors. These resolution-based 

predictors are used to train a model that outputs a risk score quantifying the chances 

of a voxel represents a cyst location using machine learning algorithms [17]. The final 

segementation is then obtained by automatically detecting an adaptive threshold to 

stratify the output scores in those belonging to a cyst or background. 

2.1 Image dataset 

The SD-OCT data used in this work were restricted to the training dataset provided by 

the OPTIMA laboratory (Christian Doppler Laboratory for Ophthalmic Image Analy-

sis, Department of Ophthalmology, Medical University of Vienna) for the Cyst seg-

mentation challenge hosted at MICCAI 2015. We did not consider additional images 

for training and testing in order to directly compare to other methods being evaluated 

in the challenge. These data consisted of 15 SD-OCT volumes containing a wide vari-

ety of retinal cysts with accompanying clinical ground truth annotation manually 

drawn by two different readers. The SD-OCT volumes were collected using 4 differ-

ent vendors at varying resolutions and scanning patterns: Cirrus (Carl Zeiss Meditec, 

Dublin, CA, USA), Nidek (NIDEK Co., Hiroishi, Gamagori, Japan), Spectralis (Hei-

delberg Engineering, Heidelberg, Germany) and Topcon (Topcon medical Systems, 

Santa Clara, CA, USA). Further details about each of the considered volumes charac-

teristics are provided in Table 2 in the results section. 

2.2 Intra-retinal layer segmentation 

We used our previously introduced intra-retinal later segmentation algorithm 

(SOARS) [14] to automaticaly outline the axial depth at each location in the X-Y 

plane of 7 different boundaries located between the ILM and IS: Internal Limiting 

Membrane, inner and outer boundaries of the Retinal Nerve Fiber Layer, outer 

boundary of the Inner Plexiform Layer, outer boundary of the Inner Nuclear Layer, 

outer boundary of the Outer Plexiform Layer and inner boundary of the Inner 



Segment / Outer Segment Junction. The location of the center of the foveal pit was 

also determined automatically, considering the centroid of the expected inner retina 

thickness depression in a region surounding the center of the volume. 

2.3 Feature extraction 

A set of 34 quatitative features are extracted for each voxel located within the ILM 

and the IS. A description of these features is included in Table 1.  

Table 1. Description of quantiative features extracted for each voxel 

Feature Number Description 

1 Recorded voxel intensity normalized across SD-OCT volume 

2-7 Indication wether the voxel belongs to the 6 intra-retinal layers 

8-14 Axial distance of voxel to the 7 intra-retinal boundaries 

15-20 Axial thickness of the 6 intra-retinal boundaries at voxel location 

21-26 Recorded intensity in voxels in 3D 6-neiborhood  

27 Voxel distance to foval cencer 

28 Percentile within lower-Gaussian fit of retinal layer intensities 

29 Percentile within higher-Gaussian fit of retinal layer intensities 

30 Difference significance considering the two Gaussian fits  

31 Intensity normalized considering RSVP values 

32 Percentile within lower-Gaussian fit of RSVP image intensities 

33 Percentile within higher-Gaussian fit of RSVP image intensities 

34 Difference significance considering the two RSVP Gaussian fits 

RSVP images were generated projecting the average axial intensitity values within 

the intraretinal layer in which a voxel is located. Features related to lower and higher 

Gaussian fit of layer intensities (features 28 and 29) or RSVP images (features 32 and 

33) refer to percentile of the voxel intensity within the result of fitting two Gaussian 

distributions to the collection of intensities recorded throughout the intraretinal layer 

where the voxel is located (for features 28 and 29) or the intensities recorded in the 

corresponding RSVP image (for features 32 and 33). Difference significance features 

(features 30 and 34) indicate whether the difference between these two Gaussian 

distributions is statistically significant and the voxel intensity value is lower than 95% 

of the higher Gaussian fit values.  

2.4 Multiresolution predictor expansion 

In order to account for the resolution differences across OCT vendors and to also 

consider features extracted at different resolutions, we resampled the voxel-based 

extracted features at canonical sizes [16]. We will refer to the resampled voxels as 

“observations“ and to their resolution-related features as “predictors“. Resampling 

was done with a Gaussian filter at four canonical possible observation sizes: Res.1 

(120,360,360), Res.2 (40,120,120), Res.3 (13.33,40,40) and Res.4 (4.44,13.33,13.33), 

all in micros in the (X,Y,Z) directions, respectivelly.  



2.5 Computation of risk score 

We used the predictors extracted at each resolution to create a model generating a 

score related to the probability that each observation belongs to a cyst. An independ-

ent predictive model was created at each of the four resolutions using Lasso regulari-

zation [17] in order to prevent overfitting and to enable feature selection. Each model 

was trained using observations from the training data separated at each observation 

size within the SD-OCT volume, considering the ratio of voxels outlined as a cyst by 

any of the two manual readers within the observation span as the ground truth. Due to 

the large number of observations extracted from each volume, and in an effort to in-

crease training speed, the number of observations at each resolution was also reduced 

to only consider those not including a ratio or 1 or 0 as ground truth in the immediate-

ly higher observation size (lower resolution). This way, each resolution increase can 

be viewed as a refinement step. This process is indicated in Figure 2a. Output scores 

were computed for observations at each voxel location of the test data at the four reso-

lutions considered, so as to produce a score for each voxel. 

 

Fig. 2. a) Selection of voxels used to train the model at each resolution in and example case 

(labeled as Spectralis 1 here). The red outlines indicate those voxels that were selected (detail is 

zoomed in the green squares). b) Threshold selection for stratification at subsequent resolutions 

in example case (labeled as Topcon 3 here). The red verical lines in the histograms indicate the 

selected threshold. The red outlines indicate those voxels with values over the selected 

threshold at each resolution. 

2.6 Score stratification and segmentation refinement 

The automated process of selecting an SD-OCT volume adaptive threshold for the 

stratification of output scores is displayed in Figure 2b. From the lowest resolution 



(Res.1) to the highest resolution (Res.4), this process selected as foreground region 

the output scores over a threshold, and this foreground region was further refined by 

analyzing the scores at the subsequent higher resolution. Thresholds were selected by 

analyzing the histogram of scores (computed with 50 bins) at each resolution, limited 

to the scores selected as foreground in the previous lower resolution. The thresholds 

for Res.1 and Res.2 were selected as the first histogram location at full-width at half-

maximum (FWHM) over the median location of output scores. The thresholds for 

Res.3 and Res.4 were selected to guarantee the inclusion of 95% of output scores 

within the higher of two Gaussians fitted to the scores (also limiting that only one 

Gaussian can be fitted with a mean of less than 0.5). The results from this stratifica-

tion were later refined by removal of isolated regions (in a 26-neighborhood) of less 

than 10 voxels, morphological opening by a kernel of radius (45, 15, 15) microns 

((X,Y,Z) directions) and filling isolated holes in each B-scan. 

3 Results 

The proposed method was evaluated in the set of provided 15 SD-OCT volumes using 

a leave-one-out cross-validation scenario. The metric used for evaluation was the 

Dice coefficient [18], measured between the automated method and each individual 

manual reader and the interestction of the two readers, computed in four different 

scenarios: volumetric and B-scan by B-scan values considering the whole SD-OCT 

volume, and volumetric and B-scan by B-scan values restricted to regions within a 

central 3mm diameter. We also computed the Dice coeffcients between the two 

manual markings at each scenario for comparison. The results obtained for each of the 

evaluated volumes and averaged across volumes are summarized in Table 2. Vendor 

and resolution characteristics for each volume are also indicated. A visualization ex-

ample for two of the SD-OCT volumes is also displayed in Figure 3. 

Table 2. Preliminary evaluation results: manual reader comparison (R), comparison between 

automated method and Reader 1 / Reader 2 / Reader intersection (R1/R2/Inter.). 

Volume 

name 

Volume 

dimensions 

Dice coefficient: 

Volumetric 

Dice coefficient: 

 B-scan 

Dice coefficient: 

Volumetric 3mm 

Dice coefficient: 

 B-scan 3mm 

R R1/R2/In.t R R1/R2/Int. R R1/R2/Int. R R1/R2/Int. 

Cirrus 1 1024x512x128 0.69 0.19/0.21/0.19 0.94 0.41/0.40/0.41 0.69 0.27/0.30/0.29 0.87 0.30/0.28/0.30 

Cirrus 2 1024x512x128 0.89 0.57/0.57/0.60 0.95 0.47/0.45/0.48 0.89 0.67/0.66/0.71 0.92 0.38/0.35/0.40 

Cirrus 3 1024x200x200 0.76 0.57/0.57/0.64 0.68 0.50/0.50/0.52 0.83 0.65/0.65/0.71 0.75 0.48/0.48/0.52 

Cirrus 4 1024x512x128 0.65 0.09/0.09/0.09 0.96 0.41/0.41/0.41 0.65 0.30/0.30/0.36 0.91 0.66/0.66/0.67 

Nidek 1 512x512x128 0.81 0.77/0.75/0.79 0.84 0.67/0.66/0.69 0.82 0.78/0.76/0.79 0.72 0.49/0.46/0.51 

Nidek 2 512x512x128 0.82 0.45/0.44/0.49 0.92 0.64/0.64/0.65 0.84 0.54/0.54/0.58 0.86 0.59/0.58/0.61 

Nidek 3 512x512x128 0.66 0.47/0.44/0.49 0.82 0.63/0.62/0.63 0.68 0.62/0.62/0.63 0.84 0.77/0.77/0.77 

Spectralis 1 496x512x49 0.80 0.61/0.56/0.62 0.89 0.49/0.47/0.49 0.81 0.63/0.59/0.65 0.81 0.38/0.36/0.40 

Spectralis 2 496x512x49 0.90 0.79/0.76/0.81 0.94 0.77/0.75/0.77 0.90 0.81/0.78/0.84 0.89 0.87/0.79/0.87 

Spectralis 3 496x1024x49 0.68 0.43/0.42/0.38 0.86 0.50/0.49/0.49 0.69 0.48/0.46/0.42 0.72 0.37/0.35/0.33 

Spectralis 4 496x512x49 0.83 0.46/0.45/0.50 0.95 0.79/0.79/0.80 0.84 0.47/0.46/0.51 0.92 0.68/0.67/0.69 

Topcon 1 885x512x128 0.68 0.56/0.48/0.51 0.83 0.67/0.64/0.65 0.69 0.68/0.58/0.62 0.83 0.81/0.75/0/78 

Topcon 2 885x512x128 0.68 0.41/0.47/0.43 0.75 0.48/0.50/0.49 0.72 0.45/0.52/0.47 0.76 0.48/0.50/0.50 

Topcon 3 885x512x128 0.85 0.77/0.78/0.79 0.88 0.62/0.65/0.66 0.86 0.79/0.80/0.81 0.81 0.69/0.73/0.74 

Topcon 4 885x512x128 0.81 0.36/0.35/0.40 0.95 0.78/0.78/0.78 0.81 0.36/0.35/0.41 0.90 0.66/0.65/0.67 

Average 

(std) 
- 

0.77 

(0.09) 

0.50 (0.20)/ 

0.49 (0.19)/ 

0.51 (0.21) 

0.88 

(0.08) 

0.59 (0.13)/ 

0.58 (0.13)/ 

0.59 (0.13) 

0.78 

(0.08) 

0.57 (0.17)/ 

0.56 (0.16)/ 

0.59 (0.17) 

0.83 

(0.07) 

0.57 (0.18)/ 

0.56 (0.17)/ 

0.58 (0.18) 



 

Fig. 3. Segmentation results for two of the SD-OCT volumes: Left, Nidek 1, shows good 

quantiative and visual agreement with the manual markings; right, Spectralis 3, did not show 

good quantitative agreement (Dice measurements) but it shows visualy good results. 

4 Discussion 

Our automated cyst segmentation method shows promising results in the evaluated 

data. The outlines produced by our method had good quantitative resemblance to 

those produced by the manual readers, although differences were higher than those 

between the two readers. Upon qualitative review of the automated segmentations, we 

overserved that they were of very high quality overall, with the exception of one scan 

where signal quality was poor (Cirrus 1). Taking as example the results displayed on 

Figure 3 (labeled as Nidek 1 and Spectralis 3 in Table 2), we can observe that while 

the quantitative comparisons yielded lower values than between the two readers, the 

outlines marked  by our method include regions that could possibly be related to cysts 

and may have been missed by the manual readers. The ability of the automated meth-

od to judge regions in 3D rather than in 2D, B-scan by B-scan (as a manual reader 

would do), may improve its performance by judging regions that should be included 

or excluded from the segmentation results. Since there is no absolute gold standard 

for the segmentations, whether if the method introduced here produces results of 

higher accuracy than a manual reader is not certain and would require further study.  

A limitation of our work is that a small number of images were used for training; 

better performance could be achieved with a larger set of images. However, obtaining 

accurate manual markings in a large set of SD-OCT cubes is costly. We also chose 

not to include aditional images in the training set to enable direct comparison of our 

method to other methods trained and tested using the same set of images. 
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