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Abstract. Accurate and reproducible segmentation of cysts and fluid-filled re-
gions from retinal OCT images is an important goal for quantifying disease sta-
tus, longitudinal progression and response to therapy in retinal diseases. However,
segmentation of fluid-filled regions from OCT images is a challenging task due to
their inhomogeneous appearance, the unpredictability of their number, size and
location, as well as the intensity profile similarity between such regions and cer-
tain healthy tissue types. While machine learning techniques can be beneficial
for this task, they require large training datasets and are often over-fitted to the
appearance models of specific scanner vendors. We propose a knowledge-based
approach that leverages a carefully designed cost function and graph-based seg-
mentation techniques to provide a vendor-independent solution to this problem.
We illustrate the results of this approach on the MICCAI 2015 OPTIMA Cyst
Segmentation Challenge dataset.

Keywords: cyst segmentation, fluid-associated abnormalities, optimal multi-object
segmentation, retina, OCT.

1 Introduction

Accurate and robust quantification of retinal cysts/fluid-associated abnormalities from
OCT scans are important for automated assessment of disease status for age-related
macular degeneration (AMD), retinal vein occlusion (RVO), and diabetic macular
edema (DME). Accurate quantification techniques allow for evaluating disease progres-
sion as well as response to treatment. However, automated quantification is a challeng-
ing image processing task due to unpredictability of fluid location, fluid appearance that
may be similar to certain layers of healthy tissue, as well as large variations in image
characteristics and appearance between different scanner vendors.

We present a graph-based cyst/fluid-associated abnormality segmentation method
that builds upon our prior work in optimal segmentation methods [17, 19, 9, 18, 12, 10,
13, 11, 14]. The graph-based methods have the attractive quality of providing the glob-
ally optimal solution with respect to the cost function definition. While prior work has
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focused on machine learning techniques for learning an appropriate cost function, this
method has some drawbacks. In particular, these methods are often over-fitted to the
image appearance from a particular scanner with specific acquisition parameters and
do not generalize well to images acquired with scanners from other vendors or even
to different acquisition parameters within the same vendor. While it is possible to train
machine-learning based classifiers jointly on a heterogeneous set of images, this re-
quires much larger datasets for training (certainly more than 2 images per vendor as
provided in the training dataset of this Challenge).

Instead, here we propose an expert-designed (as opposed to machine-learned) cost
function that generalizes well to a variety of images. This cost function takes into ac-
count the general characteristics of the input image as well as the well-known charac-
teristics of fluid-associated abnormalities, such as their layer-dependent properties. We
illustrate the results of this approach on the OPTIMA Cyst Segmentation Challenge
dataset.

2 Methods

2.1 Graph-based optimal segmentation

The key technique in our framework is graph-based optimization for image segmenta-
tion [10, 7, 6, 4]. Given a cost function and a set of constraints that provides spatial con-
text between neighboring vertices as well as neighboring surfaces and objects, graph-
based techniques can be used to obtain the globally optimal segmentation solution in
low-order polynomial time.

Variants of this approach have been successfully applied to many medical image
analysis tasks, such as knee cartilage segmentation [17], brain [14] and cortical surface
segmentation [12, 13, 11], etc. In the ophthalmic imaging domain, we have shown that
graph-based LOGISMOS techniques can be used, among other things, to successfully
segment the retinal tissue layers [9] and the choroid [18, 19].

2.2 Optimal retinal mask segmentation

An important pre-processing task for the retinal fluid segmentation is the determination
of a retinal mask for the input image. This is important as the fluid appears dark in OCT
images just like the background, and it is therefore necessary to discard all such “back-
ground” locations in order to avoid false positives in the fluid segmentation results.
While our publicly available Iowa Reference Algorithms [5, 1, 10, 9, 15, 3] provide ex-
cellent accuracy and robustness for the segmentation of 11 retinal tissue layers (which
can be combined to create a retinal mask) for images of eyes not exhibiting disease-
related changes to layer topology, the pathological eyes that contain fluid-associated
abnormalities can often be problematic, especially when these are close to the retinal
boundary.

We use a two-stage approach to address this issue. First, we employ a new retinal
segmentation method that focuses on segmentation of fewer layers but generates a more
reliable retinal mask even in the presence of fluid-associated abnormalities. Second, we
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Fig. 1. The performance of the proposed two-stage optimal retinal mask segmentation algorithm
in retinas containing fluid-associated abnormalities. Left, results from the original Iowa Reference
Algorithms [5, 1, 10, 9, 15, 3]. Right, results from proposed method.

use our existing method for correcting the Bruch’s membrane (BM) in the presence of
serous pigment epithelial detachments (PED’s) [18]. Fig. 1 illustrates the effect of these
two stages.

The layer segmentation results obtained in this step are used both individually, in
order to determine the layer membership for the layer-dependent fluid cost function pa-
rameters, as well as combined together to create a retinal mask. The rightmost column
in Fig. 3 illustrates the layers used for this manuscript. We note that the number and
properties for these layers were chosen based solely on the image appearance prop-
erties and the usefulness of the layer distinction for the purposes of the SEAD detec-
tion/segmentation task, rather than following clinically relevant tissue layer definitions.

2.3 Optimal fluid-associated abnormality segmentation

While the framework for the optimal fluid-associated abnormality segmentation is simi-
lar to the generic volumetric graph-based segmentation approaches [4, 10], we designed
sophisticated cost functions to capture the expert domain knowledge regarding retinal
fluid-associated abnormalities. This is in contrast to our previous work [16, 5] that lever-
ages machine learning techniques to automatically deduct the cost function based on a
training set.

The manually designed cost function reflects the known properties of the SEAD’s
as seen in retinal OCT images in a layer-specific manner. Additionally, to account for
the changes of appearance of the healthy retinal tissue in images acquired by OCT scan-
ners from different manufacturers, retinal tissue characteristics are determined directly
from the image based on the retinal mask segmentation and the knowledge of relative
intensities between different layers, rather than enforcing a priori intensity models. For



IV Ipek Oguz1,2, Li Zhang1,3, Michael D. Abràmoff1,2,3,4,5, and Milan Sonka1,3,4,2

this purpose, Mahalanobis distances are used as the cost function using the intensity
distribution parameters µ(l) and �(l) determined for each layer l.

Cm(x, l(x)) =
I(x)� µ(l(x))

�(l(x)
⇤ 100 (1)

An important concern for fluid-associated abnormality segmentation is the image
intensity similarity between the fluid regions and the healthy tissue layers with dark
appearances. To differentiate between these two classes of “dark” image locations, we
use a generalization of Frangi’s vesselness measure [8] to the enhancement of higher-
order structures [2], in this particular case, to a “sheetness” measure. Given a 3D image,
image locations that belong to a 2D plate of dark intensities compared to their neigh-
borhood respond strongly to this filter, similar to the vesselness filter that generates a
strong response in image locations that belong to a 1D tubular structure. The “sheet-
ness” measure is computed in a multi-scale manner to determine the maximum filter
response. In our framework, this “sheetness” measure is used to distinguish dark image
intensities that belong to blob-like fluid pockets from sheet-like healthy tissue layer. As
in [2], we define the sheetness at a scale � as follows:
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In this formulation, N is the dimensionality of the image (N = 3), M is the dimen-
sionality of the object being enhanced (M = 2 for sheetness, M = 1 for vesselness),
�’s are the eigenvalues of the Hessian matrix at the current scale �, S is the Frobenius
norm of the Hessian matrix and ↵,�, � are the relative weights.

A final component of the cost function is designed to distinguish between convex-
shaped fluid pockets from more widespread fluid-associated abnormalities, especially
sub-retinal fluid, which may appear as thick bands of dark image patches, which are not
“healthy” tissue but do not necessarily form blob-like structures. The OPTIMA Cyst
Segmentation Challenge ground truth segmentations often do not consider these latter
regions to be part of the fluid segmentation. The sheetness filter often produces similar
response for these two types of regions and therefore cannot adequately distinguish
between them. For this purpose, we incorporated a third cost function component using
the 1-D gradient response in the horizontal directions in the b-scans at a coarse level of
resolution.

As the OPTIMA Challenge does not consider serous pigment epithelial detachments
(PED’s), even though these also are fluid-associated abnormalities, these regions were
pre-segmented using [18] and masked from the cost function.
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Fig. 2. In areas where there are thick bands of fluid-filled regions, the distinction between a
blob-like cyst and other types of fluid-associated abnormalities becomes ambiguous even for
the expert-provided “truth”. (a) Raw OCT image. (b) Our segmentation result. (c) Ground truth
provided by expert 1. (d) Ground truth provided by expert 2.

A standard Boykov graph cut was used for optimizing the segmentation. A weighted
sum of the three cost function components described above, i.e., the layer-dependent
Mahalanobis intensity distance, the sheetness measure and the 1-D gradient filter, was
used to determine the node costs, whereas the image intensity differences between
neighboring voxels, weighted by the spatial distances of the voxel locations (i.e., the
image resolution), was used as the edge costs. The weights of the three cost compo-
nents were set on a per-layer basis to encode known characteristics of the retina and
fluid-associated abnormalities; for example, the thick band of fluid is far more likely to
occur next to the outer retina than elsewhere, and the sheetness measure is more relevant
in dark layers rather than in bright layers.

3 Experimental Methods

Dataset. The OPTIMA Cyst Segmentation Challenge data consisted of a training
dataset (15 scans) and two testing datasets (8 and 7 scans, respectively). The images
were acquired with devices from 4 different vendors (Spectralis, Cirrus, Topcon and
Nidek) and represented a relatively wide range of acquisition characteristics.

Segmentation parameters. All parameters for the proposed segmentation algorithm
were empirically set in a vendor-independent manner, based on performance on the
entire training dataset.

4 Results

Fig. 3 shows an illustrative example from each vendor in the Challenge dataset. We
note that the algorithm produces satisfactory segmentation results in each image despite
the widely differing image appearances across scanner vendors as well as the different
pathologies present in each retina.
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5 Discussion

Our retinal fluid-associated abnormality segmentation algorithm relies on expert-
designed cost functions. This knowledge-based segmentation approach has several ad-
vantages compared to typical machine learning approaches such as [16, 5], as our ap-
proach is not dependent on the appearance models of specific training data and does
not require large sets of manual annotations for initial training. As such, it is more
generalizable and readily applicable to a variety of OCT scans of retinas at different
disease stages and images acquired with different scanners. An additional strength of
our method is that it allows the segmentation of not only small pockets of fluid but
rather all fluid-associated abnormalities, including PED’s, subretinal fluid and diffuse
abnormalities, which may be relevant for clinical studies.

The segmentation quality of the fluid-associated abnormalities from healthy tissue
in the training dataset was satisfactory in for all vendors. The distinction between the
blob-like fluid pockets and other fluid-associated abnormalities was overall good, even
though for a few images in the training dataset, our algorithm generated false positive
responses in some of the larger bands of fluid. We note that the differences between
these two types of fluid abnormalities are often subtle and rather subjective (as evi-
denced by the relatively large inter-rater variability in such regions in the challenge
ground truth), as illustrated in Fig. 2. In this example, while our automated segmenta-
tion result does not agree perfectly with either expert’s manual annotation, we observe
that “the truth” is quite ambiguous. We are further exploring the fine-tuning of our cost
function with respect to this aspect of the segmentation task. However, we also note
that since both types of structures represent pathology which are difficult to differenti-
ate from each other in OCT images even for medical experts, it may be clinically more
beneficial to segment all such regions together to improve the reliability/reproducibility
of the image quantification results (for both automated and manual measurements).

6 Conclusion

Our algorithm is a highly generalizable knowledge-based approach that leverages graph
theoretic segmentation techniques. The careful design of cost functions makes it appli-
cable to a wide variety of image appearances and removes the need for large training
datasets, which are labor-intensive to create.
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segmentation of fluid-associated abnormalities in retinal OCT: probability constrained graph-
search-graph-cut. IEEE Transactions on Medical Imaging 31(8), 1521–1531 (Aug 2012)

6. Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. International
Conference on Computer Vision (2009)

7. Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast Approximate Energy Minimization
with Label Costs. International Journal of Computer Vision 96(1), 1–27 (Jul 2011)

8. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement
filtering. Medical Image Computing and Computer-Assisted Intervention MICCAI pp. 130–
137 (1998)
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