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Abstract. This paper presents a new three dimensional curvelet transform based 

dictionary learning for automatic segmentation of intraretinal cysts, most rele-

vant prognostic biomarker in neovascular age-related macular degeneration, 

from 3D SD-OCT images. In particular, we focus on the Spectralis SD-OCT 

(Heidelberg Engineering, Heidelberg, Germany) system, and show the applica-

bility of our algorithm in segmentation of these features. For this purpose we 

use recursive gaussian filter and approximate the corrupted pixels from its sur-

rounding, then in order to enhance the cystoid dark space regions and future 

noise suppression we introduce a new scheme in dictionary learning and take 

curvelet transform of filtered image then denoise and modify each noisy coeffi-

cients matrix in each scale with pre-defined initial 3D sparse dictionary. Dark 

pixels between RPE and NFL that were extracted with graph theory are consid-

ered as Cystoid spaces. The average dice coefficient for the segmentation of 

cystoid regions in whole 3D volume and within central 3 mm diameter in se-

lected data set were found to be 0.65 and 0.77, respectively. 

 

Keywords: Optical coherence tomography, Retinal Cysts, Speckle noise, Digi-
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1 Introduction 

Spectral-domain optical coherence tomography (SD-OCT) is a rapidly developing 

noninvasive cross-sectional imaging modality which allows to investigate the pres-

ence of choroidal neovascularization(CNV) activity defined as the appearance of 

subretinal fluid, intraretinal cysts, intraretinal fluid, sub–retinal pigment epithelium 

fluid, or a combination thereof to assist the diagnosis and management of neovascular 

age-related macular degeneration (AMD)1. The intraretinal fluid spaces reduced reti-

nal reflectivity than the surrounding tissues and can cause increased retinal thickness. 

Before segmentation of this regions in OCT images, the development of algorithmic 

approaches to provide noise suppression must be performed. In recent years, some 

approaches have been heavily investigated for speckle noise reduction, like aniso-
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tropic diffusion-based methods 2-4, wavelet–based methods 5, dual tree complex wave-

let transformation 6, curvelet transform 7, sparsity-based denoising 8,9. Here, a novel 

speckle noise reduction algorithm is used10, which is optimized to reduce speckle in 

an OCT image while maintaining strong edge sharpness. For this purpose we first 

apply recursive Gaussian filter to noisy image and zero possible pixels are approxi-

mated from surrounding pixels then we introduce K-SVD dictionary learning in 

curvelet transform domain for speckle noise reduction of 3D OCT images. As noise 

more affected low scale of curvelet coefficients and in order to take advantage of this 

sparse multiscale directional transform, we introduce a new scheme in dictionary 

learning and take curvelet transform of noisy image then denoise and modify each 

noisy coefficients matrix in each scale with pre-defined initial 3D sparse dictionary. 

The 3D initial dictionary for every scale in each rotation is independently selected 

from thresholded coefficients in the same scale and rotation of logarithmic transfor-

mation of image and doesn’t need any high-SNR scans (averaged versions of repeated 

scans) for dictionary learning. After denoising 3D OCT images pixels in image are 

adjusted and thresholded to segment possible fluid space candidate pixels. Then nerve 

fiber layer (NFL) and retinal pigment epithelium (RPE) layer are extracted in each B-

scan by the use of graph theory11. Identification of these lines is used to define our 

retinal regions of interest (ROI) in each B-mode image. Finally the possible false 

positives (FPs) are eliminated based on standard deviation and morphology of ex-

tracted candidate pixels. 

The organization of this paper is as follows. Section 2 discusses the 3D curvelet 

based dictionary learning denoising algorithm,  and  section  3  shows  an  implemen-

tation  of  the  algorithm  for  candidate cystoid space determination as well as our 

generalized method for removing miss extracted pixels, and results are presented in 

section 4. Finally, we conclude and give some perspectives for future work.  
  

2 OCT Denoising 

Although the direct analyzing of 3-D data as a volume and also considering the 3-D 

geometrical nature of the data is computationally expensive, but it has been shown 

that 3-D analysis of 3-D data outperforms 2-D slice-by-slice analyzing12. 3D curvelet 

elements are plate-like shapes of 2−j/2 in two directions and width about 2−j in the or-

thonormal direction which are smooth within the plate and oscillates along the normal 

direction of the plate. The parabolic scaling, direction, tightness and sparse represen-

tation properties of this 3D multiscale transform, provide new opportunities to ana-

lyze large data sets in medical image processing. In this paper we used a new imple-

mentation of the 3D fast curvelet transform (3DFCT) 13,14 that has a reduced redun-

dancy factor than the wrapping-based implementation as proposed in curvelab 

Toolbox 15,16 with the strong directional selectivity property at the finest scale.  

For this purpose and taking curvelet coefficients: 

 

1. Cartesian coronization is performed that decomposes the object into dyadic co-

ronae based on concentric cubes. Each coronae is subdivided into trapezoidal re-

gions conforming the usual parabolic scaling as shown in Fig.1. 



2. The 3-D coefficients are obtained by applying an inverse 3D FFT to each 

wrapped wedge as shown in Fig.1, that appropriately fits into a 3-D rectangular par-

allelepipeds of dimensions∼ (2j, 2j/2, 2j/2) centered at the origin. 
 

Since the curvelet coefficients have a sparse distribution, we have only a few large 

coefficients that show the main structure of image and the remained coefficients tend 

to zero 15. This transform maps signals and noise into different areas and signal’s 

energy is concentrated in a limited number of coefficients in curvelet domain. 

OCT denoising can improve the image quality for  the  accurate  analysis  of  im-

age information, such as intra-retinal layers and boundaries of pathology that the re-

sults of accurate detection of these features are fully dependent on image enhance-

ment through image denoising 17,18. For this purpose in our selected dataset all zero 

value corrupted pixels are determined from 5×5×5 surrounding pixels based on recur-

sive Gaussian filter19. After removing zero pixels, we used a novel speckle noise re-

duction algorithm that was previously implemented on 3D, SD-OCT, Bioptigen imag-

ing systems10. The our curvelet-based approach consists of first transforming the 

noisy image using the 3DFCT, and taking curvelet coefficients, then in curvelet do-

main for each scale and rotation the coefficient matrix is independently denoised 

based on K-SVD dictionary learning. A fundamental consideration in employing the 

KSVD dictionary learning is the selection of the start dictionary D. While some popu-

lar class of sparsity based denoising algorithms exploits the information of the noisy 

image itself to define the dictionary8, however, the high-level of noise in the SDOCT 

images negatively contend with the learning process, degrades the quality of the 

trained dictionary. An alternative (ideal) approach is to learn the dictionary from the 

noiseless with high SNR image. Since in practice, such an ideal image is not availa-

ble, so we select initial dictionary from thresholded curvelet coefficients in same scale 

and rotation of logarithmic transformation of noisy image (equation 1). 

 The hard threshold T j,l is applied to each curvelet coefficients such that: 
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Fig. 1   3D rendering of Curvelet atom in frequency (a), and discrete frequency tiling (b), the 

shaded area separates 3D wedge. 

  



The threshold Tj,l is selected based on so called k-sigma method 20, in 

which Tj,l=k×σ1×σ2, where k is an adjustable parameter, σ1 is the standard 

deviation of noise from a background region in the image data, and σ2 is 

the standard deviation of noise in the curvelet domain at a specific scale j 

and orientation l 20. 

After finding the appropriate 3D initial dictionary, D, for each scale and orientation, 

the noisy curvelet coefficient matrixes of noisy image in same scale and rotation are 

despeckled based on K-SVD dictionary learning11. 

Since the curvelet transform is successful in dealing with edge discontinuities, it is a 

good candidate for edge enhancement. So, in order to enhance the contrast of intra-

retinal layer boundaries, denoised curvelet coefficients, before taking 3D inverse dis-

crete curvelet transform (3D-IDCUT),  can be modified in order to enhance edges in 

an image 21,22. A function must be defined which modifies the values of the curvelet 

coefficients by ),,( pljCck as follows: 
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In this equation N=0.2M, here M is the maximum curvelet coefficient of the rela-

tive band. Then we reconstruct the enhanced image from the denoised and modified 

curvelet coefficients by applying IDCUT. The outline of the whole denoising process 

is shown in Fig. 2. 

 

3 Candidate Cystoid Space Determination 
In this section we present a new candidate detection algorithm to separate the dark 

spaces from the rest of the image. During this process, each pixel ),,( kjif  in des-

peckled image is adjusted as follows: 
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Fig. 2. The outline of the proposed method for despeckling 

 



where Wf , )( WfMax  and )( WfMin are the mean, maximum and minimum intensi-

ty value of the image within a window W of size 3 × 3× 3 respectively. The dark cys-

toid spaces in adjusted image is trend to zero and extracted by applying simple 

threshold (t=5). 

3.1 Removing Miss Extracted Pixels 

In order to improve the specificity, we reject FP pixels by extracting nerve fiber 

layer (NFL) and retinal pigment epithelium (RPE) layer in each B-scan by the use of 

graph theory23. We use these extracted lines to define the upper and lower bounds as 

retinal region of interest (ROI) in which we segment the cystoid fluid. Then we define 

and calculate the F ratio24 and remove every connected component in ROI that has 

F>4. This selection remove each connected component that has line shape structure 

belongs to dark regions between Outer Plexiform Layer (OPL) and Outer Nuclear 

Layer (ONL). Fig.3 depicts the evaluation of F. 
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Fig. 3. Illustration of the evaluation F 

 

The distribution of pixel intensity in cystoid spaces are also uniform25 so final cys-

toid volumes are extracted by rejecting regions with a standard deviation greater than 

an empirically determined value of 30. 

4 Experimental Results 

This study has focused on OCT images obtained from spectralis SD-OCT (Heidelberg 

Engineering, Heidelberg, Germany) system. To evaluate the performance of this au-

tomated method, the method was applied on four 3D-OCT images each contain 49 B-

scans, and the dice coefficients26 of the segmented cystoid regions entire 3D volume, 



were compared against the two manually labelled grader. Fig 4 show the results of our 

proposed algorithm. 

Table 1. Evaluation of proposed method on against the two manually labelled grader. 

Evaluation using Grader 1 Grader 2 intersection of Graders 1 & 2 

 

Dice coefficient(s) 

spectralis_1 0.7140 0.6817 0.7181 

spectralis_2 0.4549 0.4581 0.4501 

spectralis_3 0.6954 0.6501 0.6846 

spectralis_4 0.7115 0.7255 0.7307 

 

Dice coefficient within 

central 3 mm diameter 

 

spectralis_1 0.8173 0.7792 0.7918 

 

spectralis_2 0.7775 0.7769 0.7493 

 

spectralis_3 0.7563 0.7823 0.7652 

 

spectralis_4 0.7528 0.7732 0.7710 

    

(a)                                                      (b)                                                  (c) 

   
(d)                                                      (e)                                                  (f) 

Fig.4. Results of our proposed method. (a) Despeckled image, (b) Adjusted image (c) Candidate cystoid pixels (d) Detected 

ILM and RPE and other layers with graph theory (e) Extracted ROI (f) Segmented cystoid pixels 



5  Conclusion 

This paper presented a new method for segmentation and quantify the total volume 

occupied by intraretinal cystoid fluid from 3D OCT image. We tested our algorithm 

on four 3D Spectralis SD-OCT (Heidelberg Engineering, Heidelberg, Germany) im-

ages, each contain 49 B-scans. In this paper we use the graph theory for extraction of 

of NFL and RPE, the upper and lower bounds as retinal region of interest, in order to 

increase the accuracy of detected bounds. In the presence of epiretinal membrane 

(ERM), a fine piece of scar tissue that grows on the surface of the retina, some FPs 

extracted that should be distinguish from intraretinal cysts. However the proposed 

method revealed promising results, but further validation studies with larger samples 

are needed. 
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