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ABSTRACT 

Purpose: To compare the performance of automatically quantified optical coherence tomography 

(OCT) imaging biomarkers and conventional risk factors manually graded on color fundus 

photographs (CFP) for predicting progression to late age-related macular degeneration (AMD). 

Design: Longitudinal observational study. 

Participants: 280 eyes from 140 participants with bilateral large drusen. 

Methods: All participants underwent OCT and CFP imaging at baseline and were then reviewed at 

six-monthly intervals to determine progression to late AMD. CFPs were manually graded and OCT 

scans underwent automated image analyses to quantify risk factors and imaging biomarkers 

respectively based on drusen and AMD pigmentary abnormalities. Four predictive models for 

progression to late AMD or atrophic AMD only were developed (each including age), based on: (1) 

CFP only (two parameters); (2) OCT biomarkers, minimal (three parameters); (3) OCT biomarkers, 

extended (seven parameters); (4) CFP and OCT combined (eight parameters).  

Main Outcome Measures: Predictive performance for progression to late AMD, examined based 

on the area under the receiver operating characteristic curve (AUC) for correctly predicting 

progression. 

Results: The AUC for predicting late AMD development was similar for the models based on CFP 

alone (model 1; 0.80), OCT alone (models 2 and 3; 0.82 for both) and when using both modalities 

together (model 4; 0.85). In addition, these models also performed similarly for predicting the 

endpoint of atrophic AMD only (AUC = 0.83, 0.84, 0.85 and 0.88 for models 1, 2, 3 and 4 

respectively). 

Conclusions: OCT imaging biomarkers could provide an automatic method of risk stratification for 

progression to vision-threatening late AMD as well as manually grading of CFP.
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INTRODUCTION 

Age-related macular degeneration (AMD) is a condition where the early hallmarks signs of drusen 

are typically detected many years before late neovascular or atrophic complications develop. 

However, AMD progression is highly variable and the ability to accurately identify individuals at 

high-risk for disease progression remains limited. For example, only approximately one in five eyes 

that progress over a 5-year period would be correctly predicted based on demographic and clinical 

AMD severity information at 95% specificity.1 As such, better methods for risk stratification are 

needed. 

 Optical coherence tomography (OCT) is an imaging modality that enables near-cellular and 

three-dimensional visualization of the retina, which has allowed the detection of disease-related 

features in AMD that are not visible or difficult to distinguish on clinical examination or color fundus 

photographs (CFP).2-4 OCT imaging has also enabled the quantification of drusen volume, internal 

reflectivity and shape and also the quantity and inner retinal location of hyperreflective foci (HRF). 

These quantitative OCT imaging biomarkers have previously been reported to be associated with 

or predict the progression to late AMD,5-11 and thus show promise as an effective and potentially 

automated method for risk stratification. Artificial intelligence (AI) based methods were recently 

developed to detect and quantify morphological changes in standard OCT images, allowing a 

personalized prediction of disease progression.11,12  AI-based analyses, particularly deep learning, 

offers break-through qualitative and quantitative evaluation of retinal features, particularly in early 

disease manifestation.13 However, no previous studies have yet evaluated the performance of  

automatically quantified OCT biomarkers compared to conventional methods of risk stratification 

based on clinical severities manually determined on CFPs.14,15 In addition, no studies have 

examined whether the use of OCT imaging along with conventional CFP clinical severity 

classifications can further improve the performance of risk stratification.  

This study therefore sought to compare the performance of automatically quantified OCT 

imaging biomarkers against conventional risk factors determined manually on CFPs at predicting 

the progression to late AMD in a longitudinal cohort of individuals with intermediate AMD and to 

examine the value of the combined use of both approaches. 
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METHODS 

This study included participants in the sham treatment arm of an interventional study aiming to 

slow the progression of AMD in those with intermediate AMD, and as such represent the natural 

history of AMD.16 Institutional review board approval was obtained at all sites and written informed 

consent was obtained from all participants. This study was also conducted in accordance with the 

International Conference on Harmonization Guidelines for Good Clinical Practice and with the 

tenets of the Declaration of Helsinki.  

The primary aim of this study is to determine the predictive performance of automatically 

quantified OCT imaging biomarkers compared to manually graded risk factors on CFPs at baseline 

for the development of late AMD in a cohort of intermediate AMD participants, reviewed at six-

monthly intervals over a 36-month period. This study only included participants that had at least 

one follow-up visit. 

 

Participants 

This study included individuals at baseline that were at least 50 years of age, had at least one 

large druse (>125 µm) within 1500 µm of the fovea in both eyes (which meets the definition of 

intermediate AMD17), and had a best-corrected visual acuity of 20/40 or better in both eyes. Any 

participant with late AMD or other ocular, systemic or neurologic disease that could affect retinal 

assessment were excluded. Late AMD included the presence of neovascular AMD (nAMD; defined 

as the presence of lesion on fluorescein and indocyanine green angiography, or subretinal 

hemorrhage associated with fluid on OCT imaging), geographic atrophy (GA) on CFPs (defined as 

the presence of a sharply delineated, roughly round or oval area of partial or complete retinal 

pigment epithelium [RPE] depigmentation resulting in improved visibility of the underlying large 

choroidal vessels ≥ 175 µm in diameter within the central 3000 µm radius region), nascent 

geographic atrophy (nGA; defined as the presence of subsidence of the outer plexiform layer and 

inner nuclear layer and/or a hyporeflective wedge-shaped band within Henle’s fiber layer3,18,19 on 

OCT imaging) or complete RPE and outer retina atrophy (cRORA; defined as a zone of attenuation 

or disruption of the RPE band with increased signal transmission below Bruch’s membrane ≥ 250 

µm in width, associated with overlying photoreceptor degeneration)20.  
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Imaging and Image Analysis 

At each visit, all participants first performed visual acuity measurements, pupillary dilation and then 

OCT imaging and CFP. Macular-centered, non-stereoscopic digital CFPs were obtained using a 

site-specific fundus camera with a minimum resolution of 2000 ´ 2000 pixels. OCT imaging was 

performed by obtaining a volume scan covering a 20º ´ 20º region with 49 horizontal B-scans (25 

frames averaged per scan) using the Spectralis HRA+OCT (Heidelberg Engineering; Heidelberg, 

Germany).  

CFPs were manually graded for the presence and size of drusen and presence of AMD 

pigmentary abnormalities (either hyperpigmentary or hypopigmentary changes) according to the 

modified Wisconsin grading system by one senior grader.17 OCT volume scans underwent 

automated image analysis, including inner retinal layer segmentation using the Iowa Reference 

Algorithms21, and outer retinal layer, drusen and HRF segmentation using deep learning 

approaches22,23 (based on a convolutional neural network previously trained on a different 

cohort24). The OCT imaging biomarkers quantified and evaluated in this study include cube-root 

drusen volume, mean and variability of drusen reflectivity, variability of RPE-drusen complex 

(RPEDC) band height and cube-root volume of HRF overall, and separately for HRF within the 

outer retinal bands (inner aspect of the ellipsoid zone to outer aspect of the RPE), outer nuclear 

layer (ONL) and inner retinal layers (above the ONL). These parameters were calculated for the 

central 5-mm diameter region, and their image segmentation is illustrated in Figure 1. 

 

 

Figure 1: Example of automated image segmentation (original B-scan shown on the left, 

segmented B-scan shown on the right), which enabled the quantification of hyperreflective foci 

(HRF; regions highlighted in red), drusen characteristics (region between the orange and magenta 
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lines) and retinal layers including the retinal pigment epithelium-drusen complex (RPEDC), outer 

retinal bands (ORB), outer nuclear layer (ONL) and inner retinal bands (IRB). 

 

Predictive Modelling 

The endpoints in this study include the development of late AMD or atrophic AMD (defined as the 

presence of nGA, cRORA or GA). When evaluating the atrophic AMD endpoint, all eyes that 

developed neovascular AMD were censored at the day of its detection, given that the development 

of nAMD complicated the assessment of atrophic AMD. Any participant who was lost to follow-up 

or died during the study were censored at their last visit of assessment, but all other participants 

were censored at the 36-month visit if they completed the entire follow-up and did not develop an 

endpoint. Four predictive baseline models for these endpoints were thus developed, each including 

participant’s baseline age as a demographic parameter, as follows: 

 

1. CFP Grading Only (Manual): based on the manually graded presence of pigmentary 

abnormalities (definitely present vs. questionable or absent). A model with 2 parameters. 

2. Minimal OCT Biomarkers (Automated): based on the automatically determined cube-root 

drusen and HRF volume only. A model with 3 parameters. 

3. Extended OCT Biomarkers (Automated): based on the automatically determined cube-root 

drusen volume, drusen reflectivity parameters, RPEDC band height variability, and cube-

root HRF volume in the three separate layers. A model with 7 parameters. 

4. CFP Grading (Manual) and Extended OCT Biomarkers (Automated): combining model 1 

and 3 above. A model with 8 parameters. 

 

The predictive models were developed using a Cox proportional hazards model for the time to 

develop the endpoints, using a leave-one-participant-out cross-validation procedure. All 

parameters were first normalized through subtracting each value by the mean and standard 

deviation of the values from the derivation cohort (i.e. the whole cohort except for the one 

participant that was left out). The coefficients (hazard ratios) were used directly to generate a risk 

score for the one participant left out.  
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Statistical Analysis 

The performance of these models was evaluated using a Wald test of the difference in a covariate-

adjusted area under the receiver operating characteristic curve (AUC), when accounting for the 

maximum follow-up duration (as those with shorter follow-up durations have a lower probability of 

developing an endpoint) and between-eye correlations within the same participant. The adjusted 

proportion of variation in the time to develop the endpoints explained by risk scores from each 

model (R2) was also calculated to provide an estimate of their predictive ability.25 A bootstrap 

resampling procedure (n = 1000 resamples) was used to calculate standard errors for hypothesis 

testing for both the AUC and R2 parameters. All analyses were conducted using STATA software 

version 14.2 (StataCorp, College Station, TX). 

 

 

RESULTS:  

This study included 280 eyes from 140 participants with a mean age of 70 ± 8 years old (range, 51 

to 89 years old) and predominantly (77%) female. Almost all participants completed the 36-month 

follow-up, except for 6 (4%) participants. A total of 40 (14%) and 8 (3%) eyes developed atrophic 

and neovascular AMD as their first late AMD endpoints, leading to a total of 48 (17%) eyes that 

developed late AMD in this study.  

 At baseline, a total of 82 (29%) eyes were graded as having AMD pigmentary abnormalities 

on CFP, the median drusen volume was 94.6 nL (interquartile range, 42.9 to 187.5 nL) and median 

HRF volume was 0.7 nL (interquartile range, 0.4 to 1.4 nL).  

 

Predictive Performance for Late and Atrophic AMD 

The predictive performance of the models examined are summarized in Table 1, and it shows that 

the models using only OCT as imaging biomarkers (model 2 and 3) performed similarly to the one 

using CFP grading alone (model 1; P ≥ 0.630). Note that the performance of the models using the 

minimal compared to extended OCT biomarkers were also similar. The combined use of both CFP 

and OCT imaging biomarkers (model 4) had the highest predictive performance (AUC = 0.85 and 

0.88 for all late and atrophic AMD respectively), but it was also similar to using CFP grading alone 
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(P ≥ 0.049). Note that the predictive performance for a model using baseline age alone was 

markedly lower (AUC = 0.56 for both late and atrophic AMD) than the models utilizing the imaging-

based AMD risk factors (Models 1 to 4). 

 
Table 1: Predictive performance of the various models based on color fundus photography (CFP) graded 
and optical coherence tomography (OCT) quantified parameters. All the models included baseline age as 
a demographic parameter. 

Endpoints and Models Evaluated AUC 95% CI P-Value* R2 

Late AMD Endpoint     

   Model 1: CFP Grading Only 0.80 0.72 to 0.89 - 0.49 

   Model 2: Minimal OCT Biomarkers1 0.82 0.74 to 0.90 0.710 0.60 

   Model 3: Extended OCT Biomarkers2 0.82 0.74 to 0.90 0.640 0.61 

   Model 4: CFP Grading and Extended OCT Biomarkers 0.85 0.77 to 0.93 0.075 0.72# 

     

Atrophic AMD Endpoint     

   Model 1: CFP Grading Only 0.83 0.76 to 0.91 - 0.59 

   Model 2: Minimal OCT Biomarkers1 0.84 0.76 to 0.92 0.870 0.67 

   Model 3: Extended OCT Biomarkers2 0.85 0.78 to 0.92 0.630 0.69 

   Model 4: CFP Grading and Extended OCT Biomarkers 0.88 0.82 to 0.94 0.049 0.80# 

Notes: AUC = area under the receiver operating characteristic curve; CI = confidence interval; R2 = survival adjusted 
proportion of variance in time to develop endpoint explained; * = compared to Model 1; 1 = including cube-root drusen and 
hyperreflective foci (HRF volume); 2 = including cube-root drusen volume, mean and variability of drusen reflectivity, 
maximum and variability of RPE-drusen complex band height and cube-root volume of HRF separately within the outer retinal 
bands, outer nuclear layer and inner retinal layers. # = significantly higher at P < 0.05 compared to Model 1. 

 

The ROC curves of the predictive performance of the models using manual CFP only and 

using manual CFP and automated OCT imaging combined are shown in Figure 2. 
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Figure 2: Receiver operating characteristic (ROC) curves of the predictive performance of a model 

including manually-graded color fundus photograph (CFP) parameters only (black line) compared 

to a model that also included automatically derived optical coherence tomography (OCT) imaging 

biomarkers (grey line) for the development of late or atrophic age-related macular degeneration 

(AMD); note both models included baseline age as a parameter. 

 

The proportion of variance explained in the time to develop endpoints by both models that 

used OCT biomarkers alone (Models 2 and 3; R2 = 0.60 and 0.61 for late AMD respectively, R2 = 

0.67 and 0.69 for atrophic AMD respectively) were not significantly different from that explained by 

the models using CFP grading alone (Model 1; R2 = 0.49 and 0.59 for late and atrophic AMD 

respectively; P ≥ 0.150). However, the model including both CFP and OCT information (Model 4) 

showed the highest proportion of variance explained (R2 = 0.71 and 0.80 respectively for late and 

atrophic AMD respectively) and this was significantly better than the model using CFP alone 

(Model 1; P ≤ 0.010); these findings are summarized in Table 1. A model using baseline age alone 

explained almost none of the proportion of the variation in time to develop endpoints (R2 = 0.01 for 

both late and atrophic AMD). 
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Examples of Findings in this Study 

Four exemplary cases illustrating the findings of this study are shown in Figure 3. In Cases 1 and 

2, both Model 1 (using CFP) and 2 (using OCT imaging) showed similar performance for predicting 

the development of late AMD. In Case 3, the model based on OCT imaging (Model 2) performed 

better than the model based on CFP (Model 1) for predicting the development of late AMD due to 

the absence of definite pigmentary abnormalities on CFP. In Case 4, the model based on CFP 

(Model 1) performed better than the model based on OCT imaging (Model 2), due to the relatively 

lower drusen and HRF volume on OCT imaging compared to the definite presence of pigmentary 

abnormalities on CFP. 

 

 

Figure 3: Exemplary cases illustrating the findings of this study, with the presence or absence of 

pigmentary abnormalities on color fundus photographs (CFP) shown in the first column, drusen 
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and hyperreflective volume maps on optical coherence tomography (OCT) shown in the second 

and third columns respectively, and a description of the case on the right of each row. Cases 1 and 

2 provide examples where predictive models based on either CFP or OCT imaging parameters 

(Models 1 and 2 in this study respectively) performed similarly at predicting the development of late 

age-related macular degeneration (AMD). Case 3 shows an example of an eye where the model 

based on OCT imaging (Model 2) performed better than the model based on CFP (Model 1), whilst 

Case 4 shows an example of the opposite case, where the model based on CFP performed better 

than the model based on OCT imaging.   

 

 

DISCUSSION 

This study demonstrated that automatically quantified OCT imaging biomarkers (relating to drusen 

and HRF characteristics) performed not significantly different from manually graded parameters on 

CFP (of drusen and pigmentary abnormalities) in its predictive performance of progression to late 

AMD in individuals with bilateral large drusen when using data at baseline only (i.e. a single time-

point). The combination of the OCT biomarkers and CFP grading explained a larger proportion of 

the variation in the time to development of late AMD than when using CFP grading alone. These 

findings highlight the value of OCT imaging biomarkers in the automated risk stratification of 

progression in the early stages of AMD. 

 In this study, we directly compared the performance of automatically quantified OCT 

imaging biomarkers and conventional grading methods of risk stratification based on CFPs for 

predicting the progression to late AMD. It is promising that the automation of risk prediction is in 

line with manual grading as this offers potentially enormous benefits for translation into the clinic, 

especially in relation to clinical trials that currently rely on expensive and time consuming grading 

of CFP. The similarity of performance may have been expected since, in this specific setting, both 

approaches consider the same basic risk factors (drusen and RPE hyperpigmentary abnormalities) 

known to be associated with disease progression in AMD. However, it may also have been 

reasonable to expect that the method based on automatically derived OCT imaging biomarkers 

that quantifies the extent of these risk factors with a greater degree of granularity to provide 
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improved performance for predicting progression, given that previous studies observed that the 

extent of these risk factors are associated with the risk of disease progression.5-11,26  

 We also observed in this study that a model based on drusen and HRF volume performed 

almost as well as a model that included additional factors such as mean and variability of drusen 

reflectivity, variability of RPEDC height and HRF volume for different intraretinal locations. With the 

exception of the intraretinal location of HRF (which a previous study observed to be an important 

risk factor for progression6), other previous studies have shown that these additional parameters 

may not contain substantial prognostic information.7,11,28 However, there may be other parameters 

that have not been evaluated or quantified in this or previous studies that might confer important 

prognostic information. It should also be noted that the OCT imaging biomarkers summarize image 

characteristics (e.g. variability of voxel intensity) without consideration of morphological patterns 

that may confer different prognosis.29,30 Such patterns could be better exploited using deep 

learning approaches, although its performance when compared to a model based on drusen and 

HRF volume remains to be established. 

 Nonetheless, the findings of this study suggest that it is possible to automatically perform 

risk stratification on OCT imaging in a manner that achieves similar performance to senior graders 

who grade CFPs, saving substantial time and costs associated with performing the latter. Since we 

observed some degree of improvement in the performance for predicting late AMD development 

when using both OCT imaging and CFPs, the automatically derived risk scores from OCT imaging 

could supplement the clinical process of risk stratification performed by fundus examination or 

visual inspection of CFPs.  

 The limitations of this study include its sample size and number of endpoints reached, and 

the predominance of atrophic AMD as the endpoint (83% of all late AMD endpoints). It was thus 

not possible to develop a sufficiently robust model to predict the development of nAMD, being the 

outcome currently of greater interest (due to the availability of treatments and the value of their 

early delivery31). The OCT imaging biomarkers evaluated in this study also did not include the 

presence and/or extent of reticular pseudodrusen (RPD), an important risk factor for individuals 

with intermediate AMD.32 Furthermore, the predictive models in this study only considered the risk 

factors at a single timepoint (i.e. baseline). Previous studies have however observed that the 
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development of late AMD is preceded by the progressive increase in the extent of drusen and 

HRF,6,33-35 and as such, longitudinal measurements of the OCT biomarkers could potentially be 

used for improved prediction of progression using joint longitudinal survival models or other 

statistical methods, and warrant investigation in future studies. For such models, the quantitative 

OCT imaging biomarkers may be advantageous due to the greater granularity in its measurements 

when compared to manually graded risk factors on CFP that are typically binary (and thus cannot 

provide information about rate of change in its parameters). Finally, employing machine learning-

based predictive models which learn to select and combine the set of biomarkers in a non-linear 

way11,12 are expected to further boost the performance of OCT-based models. 

 In conclusion, this study showed the automatically quantified OCT imaging biomarkers 

could predict the progression to late AMD in individuals with bilateral large drusen as accurately as 

manually graded parameters on CFP, and the combination of these two methods improved the 

proportion of variation explained for the time to develop late AMD. These findings suggest that 

these OCT imaging biomarkers could provide a means for automatic risk stratification and could be 

used to aid clinicians in improving their assessment of the risk of progression to vision threatening 

late AMD.  
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