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End-to-end deep learning model for predicting
treatment requirements in neovascular AMD from

longitudinal retinal OCT imaging
David Romo-Bucheli, Ursula Schmidt-Erfurth, and Hrvoje Bogunović

Abstract—Neovascular age-related macular degeneration
(nAMD) is nowadays successfully treated with anti-VEGF sub-
stances, but inter-individual treatment requirements are vastly
heterogeneous and currently poorly plannable resulting in subop-
timal treatment frequency. Optical coherence tomography (OCT)
with its 3D high-resolution imaging serves as a companion
diagnostic to anti-VEGF therapy. This creates a need for building
predictive models using automated image analysis of OCT scans
acquired during the treatment initiation phase. We propose such
a model based on deep learning (DL) architecture, comprised of
a densely connected neural network (DenseNet) and a recurrent
neural network (RNN), trainable end-to-end. The method starts
by sampling several 2D-images from an OCT volume to obtain
a lower-dimensional OCT representation. At the core of the
predictive model, the DenseNet learns useful retinal spatial fea-
tures while the RNN integrates information from different time
points. The introduced model was evaluated on the prediction
of anti-VEGF treatment requirements in nAMD patients treated
under a pro-re-nata (PRN) regimen. The DL model was trained
on 281 patients and evaluated on a hold-out test set of 69
patient. The predictive model achieved a concordance index of
0.7 in regressing the number of received treatments, while in a
classification task it obtained an 0.85 (0.81) AUC in detecting the
patients with low (high) treatment requirements. The proposed
model outperformed previous machine learning strategies that
relied on a set of spatio-temporal image features, showing that
the proposed DL architecture successfully learned to extract the
relevant spatio-temporal patterns directly from raw longitudinal
OCT images.

Index Terms—optical coherence tomography, deep learning,
age-related macular degeneration, longitudinal imaging

I. INTRODUCTION

TREATMENT based on anti-Vascular Endothelial Growth
Factor (anti-VEGF) substances has been shown to be

very effective and to significantly improve visual acuity out-
comes in patients with neovascular AMD (nAMD) [1], [2], a
leading cause of severe vision loss in the elderly population
in developed countries [3]. Nevertheless, anti-VEGF therapy
is expensive and requires frequent and long-term follow-up,
which is currently poorly plannable as recurrent and persistent
neovascular exudation demonstrates a huge inter-individual
variability.

Optical coherence tomography (OCT) has become a stan-
dard of care in ophthalmology [4]. It is the most commonly
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with the Laboratory for Ophthalmic Image Analysis, Department
of Ophthalmology and Optometry, Medical University Vienna,
Austria. (email: hrvoje.bogunovic@meduniwien.ac.at, ursula.schmidt-
erfurth@meduniwien.ac.at)

used imaging modality in ophthalmology with over 30 million
scans being performed every year in US alone [5]. It had a
pivotal role in the development of antiangiogenic therapies
for the treatment of nAMD because it is able to visualize the
macular fluid and is hence used as a diagnostic companion to
anti-VEGF treatment [6]. The use of OCT as a “VEGF meter”
in guidance of therapy has already resulted in public savings
of more than $10 billion [5]. In comparison to fluorescein
angiography (FA), OCT imaging is a fast, safe, noninvasive
technique that complemented FA imaging by providing cross-
sectional images of the retina.

Intravitreal treatment decisions are hence currently made
based on high-resolution 3D OCT scans taken at the time
of continued visits [7]. This decision is predominantly driven
by two criteria: (a) the presence of disease activity (retinal
fluid) and (b) a perceived loss in visual acuity. Specifically,
the disease activity is assessed by examination of the patient’s
retinal morphology via OCT imaging. In randomized clinical
trials, the pro-re-nata (PRN) regimen, i.e. treatment is given
when needed, and the treat-and-extend (TE) regimen extending
intervals until fluid recurs have been shown to work well,
with outcomes comparable to the more intensive monthly
regimen [7], [8].

Real-world reports unfortunately conclude that it is difficult
for patients and/or physicians to strictly adhere to a rigor-
ous follow-up schedule, resulting in patients receiving fewer
injections and worse visual outcomes when compared with
prospective clinical trials [9], [10]. Notably, patients with a
better visual acuity at the beginning of the treatment are
vulnerable to vision loss. This dilemma highlights the need for
additional image-guided predictive tools aiming at managing
anti-VEGF treatment in an optimal manner. Particularly, the
availability of artificial intelligence for predictive modeling
is expected to help at the same time minimize the number
of visits while supporting maximal visual function recovery.
Such models will allow the practicing clinicians to adequately
adjust the scheduling of patient visits, leading to optimal use
of resources, in a hope of improving real-world treatment
outcomes.

A comprehensive long-term management would be based
on a predictive model, which utilizes all the available data
from prior OCT scans in patient’s medical history. Typically,
all the relevant clinical information within an observation
window (containing more than one observation time-point) is
known. This information could then be used to predict the
clinical outcomes within a future prediction window. However,
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creating such a predictive model from longitudinal OCT data
raises several challenges. First, each OCT volume has a large
dimensionality (a 3D OCT volume typically contains approx.
70 Mio voxels). Second, though the total number of OCTs
may be large, longitudinal OCT usually is available for only
a relatively small number of patients (in 100s). Finally, there
is currently a lack of pretrained deep learning models that
would enable transfer learning in the setting of prediction from
longitudinal medical data.

A. Related Work
Recent studies on large populations have shown that deep

learning (DL) approaches are able to correctly identify com-
mon retinal diseases from OCT images. In [11], a total of
207, 130 OCT B-scans images were used to train a DL model
to distinguish four different retinal categories. In a final evalua-
tion, the classes were grouped into “urgent referral” and “non-
urgent”, and in this classification task the DL model yielded
a 99.9% area under the receiver operating characteristic curve
(AUC). Similarly, in [12] a set of 14, 884 OCT volumes
was used to train a two-stage DL framework. In the first
stage, deep neural network segments the retinal tissue into
up to 15 different classes related to the retinal anatomy and
pathology, and image artifacts. Then the derived segmentation
maps are supplied into a second stage network that is trained to
perform differential diagnosis and provide referral suggestions.
The DL framework achieved expert-like performance in the
identification and referral of sight-threatening retinal diseases
with a 5.5% error rate.

Deep learning from retinal OCT has also been employed
for predictive modeling of future outcomes or natural disease
progression. In [13] they predicted a response to anti-VEGF
treatments in patients suffering from diabetic macular edema
(DME). However, their prediction was performed from a
single pretreatment OCT, and did not integrate longitudinal
information from the treatment initiation phase. Similarly,
in [14], they developed a predictive model of conversion from
intermediate to neovascular AMD. The proposed AMDnet
takes also a single OCT, and they train the model per in-
dividual B-scan, where the prediction value at the OCT-level
was obtained by taking the mean of each volume’s individual
B-scan predictions.

Techniques based on DL have recently been introduced
for prediction tasks from longitudinal (several time points)
medical data in general. In [15], the patient electronic health
records were integrated across different time-points by using
several DL approaches including recurrent neural networks
(RNN) and convolutional neural networks (CNN). The authors
reported that this integration improves the performance in the
prediction task of cardiovascular events. Likewise, in [16], het-
erogeneous medical data from several time-points is integrated
by using a long short-term memory RNN (LSTM) to predict
Alzheimer’s disease progression with a 99% accuracy. In a
recent work [17], a classification framework for Alzheimer’s
disease diagnosis from longitudinal magnetic resonance imag-
ing is proposed. Reported experimental results showed a
91.33% accuracy in distinguishing Alzheimer patients from
normal controls.

In longitudinal retinal OCTs of nAMD patients the follow-
ing related works stand out. In a study of patients receiving
anti-VEGF treatment [18], traditional machine learning (ML)
techniques were used to analyze the prognostic value of
automatically extracted sets of retinal biomarkers. The study
aimed to predict the final visual acuity in AMD patients based
on initial treatment responses. Similarly, in [19], they predicted
macular edema recurrence after anti-VEGF therapy in patients
with retinal vein occlusion (RVO) from longitudinal retinal
OCT. However, they do not use a deep learning model but
rather rely on retinal segmentation and the resulting series of
2D retinal thickness maps were used to train a classifier based
on logistic regression with L1 regularization.

In another longitudinal study, the closest related work,
ML techniques were used to identify patients with high/low
treatment requirement in 317 nAMD patients [20]. The longi-
tudinal predictions are done by first computing 2D en-face fea-
ture maps (retinal layers thickness, retinal fluid volume/area,
among others) for each OCT volume. These feature maps
are then summarized into spatio-temporal feature vectors. The
trained ML model yielded an 0.77 (0.70) AUC for identifying
patients with high/low anti-VEGF treatment requirement. Thus
the current state of the art in longitudinal retinal OCT is based
on traditional ML approaches as the extracted spatio-temporal
features serve as an effective dimensionality reduction. How-
ever, these tasks are inherently limited to the features extracted
from OCT biomarkers that are clinically predefined and can be
segmented while there may be other predictive image patterns
that are currently overlooked, but could be found and exploited
using an end-to-end deep learning approach.

Contributions: The main contribution of this paper is the
design and validation of an end-to-end DL methodology for
prediction from longitudinal retinal OCT applied to predicting
treatment requirements for the management of nAMD. The
proposed methodology integrates imaging information across
several OCT volumes and to the authors’ knowledge, this is the
first method to use an end-to-end DL set-up for a longitudinal
OCT prediction task. A second contribution of our work, is the
design of a pre-processing pipeline aiming to reduce the OCT
volume dimensionality, by using a set of star-shaped sampling
planes, allowing the model to learn predictive patterns in
setting with limited amount of data. A third contribution,
is the interrogation of the deep learning model to identify
novel spatio-temporal imaging patterns, especially relevant
in the tasks where currently there are no clinically known
predictive imaging biomarkers. Our results show that the
proposed methodology was able to deal with the constraints
imposed by the longitudinal OCT data, and to effectively
integrate the spatio-temporal information for the clinically
relevant task of guiding nAMD treatment requirements based
on solid personalized prediction.

II. MATERIALS AND METHODS

The longitudinal OCT retreatment prediction task consists
of a set of acquired 3D scans in the observation window
from which a prediction within the future prediction window
is made. In this section, we describe first the longitudinal
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Fig. 1. Schematic diagram of the OCT pre-processing pipeline. (a) Flattening of the B-scan using Bruch’s membrane (BM), shown as a red line, as reference.
Discarded image regions are shown in yellow. (b) Star sampling: The OCT scan center is the intersecting point of the sampling planes. (c) Images corresponding
to k sampling planes with discarded regions shown in yellow. (d) Resulting single multi-tile image. In the diagram, only k = 6 sampling planes are used to
illustrate the pipeline.

OCT dataset followed by the experimental set-up used in
this work. We then describe the pre-processing algorithms
used for reducing the dimensionality of the OCT volume.
Further, we present the deep learning architecture used to
address the automatic prediction of anti-VEGF treatment needs
and the deep learning training setting. Finally, we describe a
feature/biomarker based prediction strategy used as baseline.

A. Dataset description and curation

Data of treatment-naive nAMD patients undergoing a PRN
protocol with monthly visits over two (2) years is used. A total
of 423 patients with available treatment data (time-point injec-
tion decisions) and associated initiation phase OCT imaging
were included in the present study. The effective number of
injections (ninj) received by the patients was used to define
a set of treatment requirement categories: High (ninj ≥ 16),
intermediate (5 < ninj < 16) and low (ninj ≤ 5), where
high and low categories correspond to the first and third
quartile of the population, respectively. The defined treatment
requirement category is the target in our classification task.
The study complies with the Declaration of Helsinki, and
the Ethics Committee at the Medical University of Vienna
approved the use of this data in post hoc analysis.

Curated dataset: Clinically, the decision not-to-inject in
patients that exhibit disease activity puts their vision at risk.
Hence controlling for such investigator decisions is needed for
our task, since it is not uncommon for small amounts of fluid
to be neglected in a routine examination[21]. For doing so,
we ran a deep learning based automated quantification fluid
algorithm [22] on the whole set of OCT images associated with
non-injection events during the 2 year study. In an indepen-
dent previous evaluation, this quantification algorithm yielded
a performance of 0.93 AUC in the retinal fluid detection
task [22]. After using this algorithm, we computed the median
fluid volume (q2) and the interquartile range (IQR) for all
the non-injection events in the dataset. Those non-injection

events in which the automatically computed fluid volume was
larger than q2 + 1.5× IQR were regarded as disagreements.
Patients that had more than 3 disagreements in the entire 2
year treatment period were excluded from the curated dataset.
After this procedure the total set of patients used in this study
resulted in 350 individuals.

B. Evaluation of the prediction of retreatment requirement

We defined three different prediction tasks based on the
treatment requirement information as follows.

Treatment requirement regression: For this task we tried to
predict directly the treatment requirement score (RQS) defined
as the number of received injections divided by the total
number of visits not counting the standardized initiation phase
of three consecutive monthly injections. This number ranges
between 0 (for a patient that did not require any additional
injections during the subsequent PRN phase) and 1 (for a
patient requiring injections on a monthly basis). To evaluate
the performance on this regression task we used the following
metrics: R-squared, the Pearson correlation coefficient, and the
concordance index.

Multi-class classification task: In this task, we defined the
high, intermediate and low treatment requirement categories
as defined in the Subsection II-A. We evaluated the perfor-
mance on this classification task by computing the confusion
matrix and the overall accuracy. The accuracy, specificity and
sensitivity (recall) per class were also computed.

Binary classification tasks: This task corresponds to the
identification of either low or high treatment requirement
patients. This particular problem has been addressed in a
previous work [20]. Specifically, both problems can be defined
as two separate binary classification tasks: high (low) group vs.
remaining patients. To evaluate the performance in this task,
we used the area under curve (AUC) of the receiver operating
characteristic (ROC).
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C. OCT volume pre-processing

The OCT scan pre-processing starts by using a movement
correction process to reduce the misalignment across OCT B-
scans following the algorithm described in [23]. Afterwards,
Bruch’s membrane (BM) is automatically detected in the OCT
volume by using the Iowa reference algorithms [24], [25].
The curve corresponding to the BM segmentation is used
to flatten each B-scan to a predefined level. This operation
reduces the variability across OCT volumes and facilitates
the subsequent pre-processing. Imaging data corresponding to
658 µm and 209 µm above/under the BM delineation is then
cropped from the B-scans to obtain a region with a height
of 224 pixels centered on the retina. After this operation,
a star pattern sampling is applied to the volume yielding a
set of images, each corresponding to one sampling plane.
The sampling is carried out by using the en-face center of
the scan as the intersecting point of the k sampling planes
(Fig. 1). Afterwards the k obtained images are cropped while
preserving the information within ∼ 3 mm of the central
region of the retina, which is considered to be most relevant
to central vision function. The resulting images are finally
arranged into a 2D grid (Fig. 1(d)) that contains information
from an individual patient at a specific time-point.

D. Deep learning architecture

The DL approach developed in this work, is comprised of
three components (Fig. 2):

DenseNet architecture: The densely connected network
(DenseNet) [26] provides the feature extraction process in the
OCT images. The DenseNet architecture consist of multiple
“dense blocks”, or sets of convolutional layers (with kernel
size 1 × 1 and 3 × 3). The convolutional layers within a
dense-block are connected in such a way that their inputs
correspond to ALL the outputs of the preceding layers. The
selection of this architecture was motivated by the relatively
low number of parameters, when compared with other standard
architectures, and additionally it has been empirically observed
that DenseNet has good convergence properties[27].

Recurrent neural network: A standard RNN was used to
integrate the information of the OCT images across multiple
time-points of the initiation phase. The RNN architecture cor-
responds to a two-layer Elman RNN with hyperbolic tangent
(tanh) activation function [28]. In a nutshell, the recurrent
neural algorithm is a fully connected layer that has a feedback
connection which allows temporal dynamic changes to be
modeled.

Fully connected layer: This layer integrates the spatio-
temporal information from the RNN and generates a category
prediction. This component consist of a linear layer followed
by a non-linear activation function. The output correspond
to the patient’s probability of being part of each treatment
requirement category.

The whole DL strategy was implemented using the pytorch
library [29]. The pytorch library’s dynamic graph computation
functionality allowed us to implement a seamless transition
between the DenseNet and the RNN for the gradient compu-
tation in the backpropagation algorithm (weight optimization

process) in an end-to-end training process from scratch, i.e.,
no pre-trained weights were used to fine-tune the model
parameters.

At training stage, the cross entropy (CE) loss was used
for the classification tasks as it models the error between
two probability distributions in the framework of maximum
likelihood estimation. For the regression task the L1 loss was
used. The L1 loss penalizes the L1 norm between the predicted
and actual values of the inputs:

loss(x) = |xn − yn| (1)

Where xn corresponds to the predicted value and yn the
ground truth for a specific sample.

On the other hand, the CE loss is associated to a n
dimensional output vector, each dimension associated to the
probability of a particular input being categorized in one of
the n classes. Then, the associated loss for each class can be
described as follows:

loss(x, kclass) = −x[kclass] + log(
∑
j

exp(x[j])) + λ ‖ w ‖22

(2)
Where x[kclass] corresponds to the probability for the cor-

rect label, given a specific example, and x[j] corresponds to
the probability assigned to class j. The final loss is computed
by aggregating all the class losses. The L2 weight penalization
term was also added to regularize the network weights w and
reduce the likelihood of DL model over-fitting. Additionally,
data augmentation techniques were applied: OCT volume
flipping (left/right horizontal flipping) and image intensity
augmentation: brightness and contrast [30].

E. Deep learning training setup

Evaluation of the presented methodology was performed on
a randomly fixed set-up. This particular setup is widely used
in the DL research community due to the computationally
expensive DL training process. Additionally, the longitudinal
OCT prediction task requires a relatively large number of
OCT images and the DL model selection and evaluation would
become computationally prohibitive if a more exhaustive set-
up such as cross-validation is used. The available data was
split into train, validation and test sets (∼ 70% - 247 patients,
∼ 10% - 34 patients, ∼ 20% - 69 patients) using random
sampling stratified by the treatment requirement category
(high, intermediate, and low). In the pre-processing step, the
number of sampling planes was set to k = 16. Accordingly, the
resulting sampled images for each OCT volume were arranged
in a 4× 4 multi-tile image.

The DenseNet architecture was comprised of (nDB) dense-
blocks with a growth rate of 12, and each dense-block was
composed by nL convolutional layers. Drop-out layers were
also included in the dense-block and the drop-out rate for all
of them was set to 0.4. The recurrent neural network is fed
with the features extracted from the DenseNet architecture and
its output is fed to a fully connected layer to finally obtain
a 3-dimensional category vector (classification task), or a 1-
dimensional output (regression task).
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Fig. 2. Deep learning architecture used in this paper. After pre-processing the initiation phase OCT volumes of a specific patient (T0: day 0, T1: day 30,
and T2: day 60), three different multi-tile images are obtained. These images are fed into the densely connected network (mainly composed by dense-blocks,
convolutional and pooling layers). The extracted features of each multi-tile image are integrated using a recurrent neural network (RNN). The unfolded
representation is presented in the scheme with the initial state U0 equal to a vector of zeros. Finally, a fully connected layer predicts the treatment requirement
category: High, intermediate or low.

Regression task: In this case, the L1 loss was optimized
using the SGD algorithm and a fixed number of epochs
(nepochs = 300). The learning rate was set to lrate = 1e−3

and an automatic learning schedule was used 1. Six different
configuration models varying the number of dense-blocks
(nDB = 5 or nDB = 6) and number of convolutional
layers. After each training epoch, the L1 loss was computed to
evaluate the performance in the validation set and the model
associated with the best running performance was stored. We
stored 6 different models, with different parameters regarding
the number of dense-blocks (nDB = 5 or nDB = 6) and
number of convolutional layers {nL = 2, nL = 3 or nL = 4}
within each dense block. The resulting models from the six
(6) different configurations were evaluated in the validation
set and the best performing model was selected.

Classification tasks: A similar procedure, to that described
for regression task, was used for the classification task. The
main difference is that here the CE loss, instead of the L1 loss,
was minimized using the SGD algorithm. The same learning
rate schedule with an initial learning rate (lrate = 1e−3) was
used. In this case, again 6 different models, with varying pa-
rameters as described in the previous paragraph, were trained
and the best performing model was selected. The results on
the validation set used to select the parameter configuration
are presented in Table I. The geometric accuracy, defined as
the geometric average of the recall per-class, was used as the
selection metric. After comparing the performance, the model
with nL = 4 and nDB = 5 was selected.

F. Feature/biomarker based prediction strategy

An additional prediction strategy based on a random forest
classifier was implemented for comparison. The prediction
approach replicates the methodology proposed in [20] to
predict treatment needs in anti-VEGF therapy. A set of quan-
titative spatio-temporal OCT features, which are computed

1http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html

TABLE I
GEOMETRIC ACCURACY METRIC FOR THE MODEL SELECTION PROCESS

N. of Dense
Blocks (DB)

N. of conv. layers
within the DB

Geometric
accuracy

5 2 0.45
6 2 0.51
5 3 0.53
6 3 0.4
5 4 0.59
6 4 0.55

from automated segmentation of retinal fluid and retinal layers,
are used to feed the random forest classifier. The automated
retinal fluid segmentations were obtained by using a deep
learning segmentation model trained on a different set of OCT
scans [22]. Respectively, the layer segmentation was carried
out by using the Iowa reference algorithms[24], [25].

III. RESULTS

The DL model performance in the retreatment prediction
task was evaluated on the held-out test set. Each task (re-
gression, two-class, and three-class) was trained and evaluated
separately.

A. Regression task
The results for the regression task are presented in Fig. 4.

A Pearson correlation coefficient R = 0.59, and coefficient
of determination R2 = 0.22 were obtained by the selected
regression model. Additionally, a concordance index of 0.7
was achieved, i.e., 70% of patient-pairs were concordant. This
indicates that when randomly choosing any pair of predicted
RQS and sorting them, there is a 70% probability that the true
RQS order is identical.

B. Classification tasks
a) Three-class: When evaluating the model on the full

three-class classification problem, we obtained the confusion
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Fig. 3. Receiver operating characteristic (ROC) curves for the classification tasks evaluated in this paper. Left: Confusion matrix for the full three category
classification task: high, intermediate (med), and low. In this case, we used the actual output selection process based on softmax learned by the DL model.
Center: Low treatment requirement group vs remaining patients. Right: High treatment requirement group vs remaining patients. For both binary classification
tasks, the presented methodology (blue line) performs equally or better than a stratification strategy based on automated segmentation of several retinal
structures(red).

Fig. 4. Ground truth and predicted treatment requirement score (RQS) values
on the held out test set.

matrix in the leftmost column of Fig. 3. There was con-
siderable overlap between the low and intermediate groups.
Likewise, there was considerable overlap between the high
and intermediate groups. This fact is reflected on the overall
accuracy metric (0.64) for the three-class classification task.
Additionally, the accuracy, specificity, and sensitivity (recall)
per class are shown in Table II. The per-class results indicate
that the model was able to identify accurately and with high
specificity, a large number of retinas with high treatment
needs. On the high class, the accuracy was worse, indicating
that there was considerable overlap with the intermediate
group. Finally, the intermediate group has lower accuracy and
sensitivity. This result is reasonable, taking into account that
this particular group corresponds to the most challenging for

predicting response, from the clinical point of view.

TABLE II
ACCURACY, SENSITIVITY AND SPECIFICITY METRICS PER CLASS FOR THE

THREE-CLASS PROBLEM.

Class Accuracy Sensitivity Specificity
Low 0.9 0.5 1.0
Intermediate 0.65 0.61 0.71
High 0.72 0.82 0.69

b) Two-class: The results for the two different binary
classification task are summarized in the two rightmost
columns of Fig. 3. The presented DL model outperforms
the baseline in both binary classification tasks: low (high)
treatment requirement group vs remaining patients. We ad-
ditionally, applied the Delong significance test to determine
if the ROC curves between the proposed approach and the
baseline are significantly different [31]. The DL model yielded
an AUC of 0.81 in the high vs remaining classification task
outperforming the baseline model (AUC = 0.8). However
the improvement was not statistically significant (p-value
= 0.702). This implies that relevant predictive patterns are
already covered by the established fluid volume features of
the baseline model. Meanwhile, for the low vs. remaining
cases classification task the DL model yielded an AUC of 0.85
substantially outperforming the baseline model (AUC = 0.75),
a substantial improvement that was close to being statistically
significant (p-value = 0.084). This implies that for this class
the model was able to learn new predictive patterns going
beyond the established fluid volume features included by the
baseline model. This was expected as retinas requiring low
amount of treatments are mostly dry and fluid-based features
are not sufficient to identify them
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C. Interpretation of the model decisions

The DL model performance was similar (for the high vs.
rest) or better (low vs. rest) to that obtained by a strategy
based on automated segmentation of diverse retinal structures.
However, a pervasive problem with DL models is that they
produce black-box models and their interpretation is often
challenging. Thus, several visualization techniques have been
developed to address this shortcoming. These techniques aim
to determine regions of the image that contribute heavily to
the prediction of a DL model to confirm clinical robustness.

In this work, we adapted the occlusion sensitivity method
proposed in [32] to visualize the predictions of our DL model
in the longitudinal OCT prediction task. The method consists
in modifying the input images by setting the intensity values
within a rectangular patch to a pre-defined value, i.e, 0 would
define a black patch. Then, this patch is translated across the
whole image to generate a series of perturbed images. The
model is supplied with the perturbed images and the resulting
predictions are stored. The probability drop with respect to the
original image prediction is then used to build a normalized
attribution heatmap. For this task, a black patch of 32 × 32
was used. Additionally, the perturbations across the multi-tile
images in the 3 different time points were synchronized, i.e.,
the black patch was generated within the same coordinates for
the three images used on the prediction task: T0, T1 and T2.

Examples of the generated heatmaps per patient and the
corresponding multi-tile images are presented in Fig. 5. A
common finding in retinas with high treatment requirements
(top row) is a strong deformation at T0 (with the presence
of retinal fluid - black regions). It is not unusual to observe
small areas with retinal fluid even at T2 (2 months after the
initial treatment). On the other hand, retinas with low and
intermediate requirement needs, also present some fluid in the
initial time point, albeit the retinal deformation is smaller in
T0 and almost negligible in T1 and T2 in comparison to the
high treatment retinas.

Finally, the normalized attribution heatmaps of the retinas
were used to obtain a “representative” attribution heatmap per
treatment requirement category. Such representative heatmaps
were computed by averaging the normalized heatmaps of all
the correctly classified retinas in each of the three category
classification tasks. The resulting “representative” maps for
the high, intermediate and low treatment requirement cases are
shown in Fig. 6 with high (low) attribution values associated to
red (blue) regions in the multi-tile image. We can observe that
while for the high and the intermediate requirement groups the
heatmap is scattered across the whole image grid, the average
heatmap for the low group is focused on a small region below
Bruch’s membrane. Furthermore, the average representation of
the high and low categories seem to be complementary, i.e, red
regions in the low group correspond to blue regions in the high
group. This might indicate that the learned evaluation function
might actually strongly associate certain regions of the multi-
tile image to either the high/low class, while assigning a much
more homogeneous attribution map to the intermediate class.

IV. DISCUSSION

An end-to-end DL based approach for anti-VEGF treatment
requirement prediction on longitudinal OCT images was pre-
sented. Such longitudinal OCT prediction tasks are challenging
to address with DL methods because there is only a limited
number of training samples available (100s of patients), while
OCT volumes per se exhibit extremely high dimensionality
(millions of anisotropic voxels), the so called “large p, small
n” problem. We partially addressed this problem by using
a pre-processing pipeline that proved effective in reducing
the OCT dimensionality while still retaining relevant clinical
information (i.e., associated to the central region of the fovea).

The treatment requirement prediction herein addressed was
posed as a (a) regression task, (b) three-category classification
task, and (c) two binary classification tasks. The decision
to cast the longitudinal OCT prediction task in these three
different settings allowed us to evaluate the ability of our DL
framework to address the prediction problem with different
stages of “difficulty”.

The regression of RQS values is the hardest stage of
the problem. Though we found that the DL framework was
able to generate estimations correlated with the actual RQS
ground truth values, we also found that there was substantial
variability between the predictions and the ground-truth across
all the RQS values (Fig 4). However, in this setting it is
not clear, if a particular RQS interval is harder or easier to
predict than the others. This difficulty is addressed in the
three category classification problem, in which we split the
prediction interval into three different groups. We found out
that the model was better in identifying the extreme levels
associated with the high and low groups. However, there was a
considerable amount of cases misclassified in the intermediate
group. This resulted in a low accuracy score for the three-
class prediction task. Finally, in the two binary classification
tasks the DL separately focused on the two groups that are
clinically most relevant as they are prone to progressive visual
loss: patients with high (low) treatment needs. The results
showed that the performance for predicting high requirements
was similar (slightly better) to that yielded by the baseline
feature-based method. This might indicate that the DL model
is probably capturing information highly correlated to the
information used by the baseline model, i.e. the intraretinal
and subretinal fluid which is present for longer periods in this
subgroup. Nevertheless, a more interesting result was observed
for predicting the low requirements, in which the DL model
had a noticeably better performance. That subgroup of patients
is characterized by very little retinal fluid present and hence the
traditional biomarker does not describe the retina in sufficient
detail to distinguish well this subgroup. This is precisely where
DL models can take advantage of their automated feature
learning and our result indicates that the DL model is capturing
additional information that is not being utilized by the baseline
ML method.

The above finding/observation is further supported by our
occlusion sensitivity analysis (Section III-C). In the “represen-
tative” attribution heatmaps obtained for each category, some
patterns could be observed. For the high and intermediate
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Fig. 5. Example of normalized heatmaps obtained with the occlusion sensitivity visualization technique. For each retina, the same heatmap is superimposed
on the multi-tile images associated to the initiation stage. Observe that the retina with high treatment requirement (top row) is strongly deformed in T0, and
with presence of retinal fluid (black regions). Even in T2 some small regions with retinal fluid are still visible. On the other hand, while the low (botton
row) and intermediate (center row) also present some fluid in the initial time point, the retinal deformation is smaller in T0 and almost imperceptible in T1
and T2. In the colormap, red region represents those portion of the image where the attribution method assign higher relevance to the decision, while blue
regions denote those regions that had lower relevance to the decision.

groups most of the information is gathered from the entire im-
age grid. This is consistent with the fact that, for intermediate-
high retreatment retinas, large retinal distortions due to retinal
fluid are observed in the image grid even at the last visit of
the initiation stage. On the other hand, for the low group the
“representative” attribution map points to a specific region of
the image grid that lies underneath Bruch’s membrane. Dif-
ferentiation between low-intermediate treatment requirement
patients in this case is no longer possible with conventional
measures of disease activity (such as retinal fluid), and it is
conceivable that the model uses information from that region

to support its decision. One hypothesis is that the model was
able to capture the transition from angiogenesis to fibrosis,
the so called angiofibrotic switch [33], in this case occurring
under the Bruch’s membrane.

Inhibition of VEGF by intravitreal delivery of antibodies
was the first treatment to achieve stabilization and/or im-
provement of visual acuity by resolution of fluid and forged
a paradigm-shift in the management of neovascular AMD
[34]. However, the functional benefit of anti-VEGF therapy
relies strongly on the substances’ ability to resolve intra- and
subretinal fluid and an efficient long-term monitoring to keep
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Fig. 6. Average of the normalized heatmaps for the high, intermediate (med) and low treatment requirement groups obtained with the occlusion sensitivity
technique. The range for the resulting heatmap was [0.16 − 0.78] for the high, [0.35 − 0.7] for the intermediate, and [0.14 − 0.9] for the low treatment
requirement groups. The green grid lines represent the image border for each image tile comprising the 4 × 4 multi-tile image. The magenta dotted lines
represent the level at which Bruch’s membrane (BM) was flattened.

the individual retina free of fluid. Substantial discrepancies be-
tween individual physicians and certified reading center evalu-
ations resulted in a substantial number of missed treatments in
clinical trials using manual detection of recurrent or persistent
fluid [35], [21]. The dilemma of OCT misinterpretation in the
real world, including the inability to reliably identify, localize
and quantify pathological fluid in OCT scans, is associated
with an excessive variability in intravitreal injection rates,
reimbursement expenses and inferior clinical outcomes [10].
This makes estimating the actual treatment needs difficult and
is the reason why we relied on a curated dataset in order to
get a more realistic representation of the treatment needs as
opposed to solely relying on the number of injections received
during a trial.

AI-based methods of automated identification, localization
and quantification particularly using end-to-end learning on
large OCT volumes in the range of 60-100 million voxels per
image are particularly amenable to identify patterns of fluid
recurrence [18]. OCT imaging and image analyses can then act
as a “VEGF meter” not only detecting fluid, but with predictive
tools also identify characteristic patterns of individual disease
recurrence as early as after the initiation of therapy in each
individual patient. With millions of nAMD patients under
life-long therapy world-wide and extensive socioeconomic
costs for healthcare physicians’ ability to provide individual
point-of-care in an AI-controlled setting has a solid potential
to introduce a break-through in one of the most frequent
therapeutic applications in medicine.

Future work in this topic will include working with larger
datasets and finding additional strategies to effectively summa-
rize the high dimensionality of the OCT volumes. The end-
to-end DL techniques combined with attribution visualization
techniques may help discover novel prognostic imaging pat-
terns as promising imaging biomarkers that would need further
clinical investigation.
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