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Abstract—Diagnosis and treatment guidance are aided by
detecting relevant biomarkers in medical images. Although su-
pervised deep learning can perform accurate segmentation of
pathological areas, it is limited by requiring a-priori definitions
of these regions, large-scale annotations, and a representative
patient cohort in the training set. In contrast, anomaly detection
is not limited to specific definitions of pathologies and allows
for training on healthy samples without annotation. Anomalous
regions can then serve as candidates for biomarker discovery.
Knowledge about normal anatomical structure brings implicit
information for detecting anomalies. We propose to take advan-
tage of this property using bayesian deep learning, based on
the assumption that epistemic uncertainties will correlate with
anatomical deviations from a normal training set. A Bayesian U-
Net is trained on a well-defined healthy environment using weak
labels of healthy anatomy produced by existing methods. At test
time, we capture epistemic uncertainty estimates of our model
using Monte Carlo dropout. A novel post-processing technique
is then applied to exploit these estimates and transfer their
layered appearance to smooth blob-shaped segmentations of the
anomalies. We experimentally validated this approach in retinal
optical coherence tomography (OCT) images, using weak labels
of retinal layers. Our method achieved a Dice index of 0.789 in an
independent anomaly test set of age-related macular degeneration
(AMD) cases. The resulting segmentations allowed very high
accuracy for separating healthy and diseased cases with late wet
AMD, dry geographic atrophy (GA), diabetic macular edema
(DME) and retinal vein occlusion (RVO). Finally, we qualitatively
observed that our approach can also detect other deviations in
normal scans such as cut edge artifacts.

Index Terms—weakly supervised learning, anomaly detection,
biomarker discovery, optical coherence tomography, epistemic
uncertainty.
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Fig. 1. Anomaly detection in retinal OCT. (a) Healthy retina. (b) Diseased
subject (manual annotation of anomaly in green, prediction of anomaly by
our model in red).

I. INTRODUCTION

Biomarker detection in medical imaging data plays a crit-
ical role in the context of disease diagnosis and treatment
planning [1]. However, performing this task manually is
extremely expensive and time consuming. Moreover, as it
requires experts in the field to know every possible visual
appearance of the regions of interest, results may suffer from
intra- and inter-grader variability [2]. Automated methods can
partially address these issues by exploiting the potential of
deep learning [3]. Supervised learning approaches are trained
to detect well-known, pre-defined biomarker categories such
as lesions or pathological changes in organs and tissues [4]–
[7]. In retinal OCT imaging, supervised methods have been
extensively used [8], e.g. for segmentation of fluid [9], [10],
drusen [11], hyperreflective material [12] or photoreceptor
disruptions [13]. However, these methods require large-scale
annotated data sets, which can be costly or even unfeasible
to obtain in some clinical scenarios. Moreover, their outputs
are limited to the pre-defined set of marker categories, and are
unable to discover novel biomarkers different from those used
for training [14].

Anomaly detection methods offer an interesting alternative
to supervised learning in this domain, as they are not limited
in their application to a specific disease or marker category.
Instead, these approaches leverage the knowledge extracted
from healthy data during training, omitting the need of a
representative patient cohort with an appropriate amount and
variations of pathologies [15], [16]. Capturing all possible
disease related appearances or rare disease manifestations is
costly or even unfeasible. In general, anomaly detection can
be defined as a two-step process in which we first learn
a model of normal appearance, and then we apply it to
detect deviations from this normal data (anomalies) during
test time [14], [15], [17]. Therefore, instead of searching in
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the entire image space, these segmented anomalies can be
explored by clinicians to identify features that might result in
novel biomarkers, allowing a more efficient discovery process.
Furthermore, identifying anomalous areas can be also helpful
to efficiently screen for diseased cases in large patient cohorts.

Bayesian deep learning has emerged as an active field of
research that aims to develop efficient tools for quantifying un-
certainties [18]–[20]. In general, uncertainties can be classified
into two main categories: aleatoric and epistemic. Aleatoric
uncertainty captures the vagueness inherent in the input, while
epistemic uncertainty refers to the model incertitude and can
be reduced by incorporating additional data into the training
process [20]. Both aleatoric and epistemic uncertainty have
previously been used for semantic segmentation [19], [20]. In
this context it has been shown that aleatoric uncertainty does
not increase for examples different from those in the training
set, while epistemic uncertainty does [20]. Hence, the latter is
more suitable for detecting changes (or anomalies) from the
normal samples. Furthermore, disease classification methods
based on deep learning were observed to be benefited by the
usage of epistemic uncertainties [21].

In this paper, we introduce a novel approach for anomaly
detection, exploiting segmentation models of normal anatomy
and their epistemic uncertainty while segmenting new images.
Our method is based on the assumption that these uncertainties
will correlate with deviations from a normal appearance.
We learn the regularities in the anatomy of healthy data,
using weak labels. In this work we use the term ”weak
supervision” to indicate that we trained our model using labels
automatically generated by a surrogate segmentation method
instead of a human reader. We exploit this characteristic as
traditional algorithms–even if they are not based on machine
learning–are expected to perform accurately due to the well-
defined properties of normal cases. Therefore, our approach
does not involve manual labels at any stage. This setting allows
to produce more training data and thereby to harvest more
appearance variability.

We experimentally evaluate our approach in the context of
anomaly detection in retinal optical coherence tomography
(OCT) scans (Fig. 1, Section I-A). We train a Bayesian U-
Net [22], [23] on a set of healthy images using weak labels of
the retinal layers, provided by a standard graph-based method
for layer segmentation [24]. At test time, we capture the
epistemic uncertainty estimates from our network by means
of Monte Carlo (MC) dropout [18], [19]. This output is
postprocessed using a novel majority-ray-casting technique in
order to retrieve compact, blob-shaped smooth segmentations
of the anomalies. On a separate test set of patients with age-
related macular degeneration (AMD), our method achieves
a Dice index of 0.789, outperforming previously published
work by a large margin. Furthermore, the performance of the
proposed method is evaluated in a volume-level classification
experiment, using only the amount of anomalous area as (dis-
criminative) feature. By individually comparing healthy cases
vs. diabetic macular edema (DME), retinal vein occlusion
(RVO), dry geographic atrophy (GA) and late wet AMD,
we observe that even this simple predictor allows to achieve
almost perfect separation.

A. Retinal OCT imaging

OCT is a non-invasive volumetric imaging technique that
provides high resolution images of the retina and is currently
one of the most important diagnostic modalities in ophthal-
mology [25]. A 3D OCT volume is composed of several
2D cross-sectional slices–or B-scans–, which are analyzed by
physicians to determine treatments, diagnosis and other clini-
cal decisions [25]. Age-related macular degeneration (AMD)
is one of the leading causes of blindness in the world [26].
Detectable AMD-related changes in OCTs are, among others,
drusen, intra- and subretinal fluid, pigment epithelial detach-
ment (PED) and photoreceptor loss [8]. Besides neovascular
AMD, which is defined by the occurrence of fluid, geographic
atrophy (GA) is the second form of late AMD, characterized
by the death of retinal pigment epithelium (RPE) cells, pho-
toreceptors and/or choriocapillaris. Other retinal diseases such
as retinal vein occlusion (RVO) [27] and diabetic macular
edema (DME) [28] are characterized by the occurrence of
intraretinal/subretinal fluid. Presence or changes in some of
these features have been shown to correlate with visual func-
tion or disease progression [29]. Predictive capability however
remains to be limited and underlying pathogenetic mechanisms
are not yet fully understood [30], meaning that there might be
other unknown structures or patterns that are still needed to
be discovered.

We propose to apply our uncertainty based approach to
automatically segment anomalies in retinal OCT scans. In
this domain, normal is defined as the absence of pathologi-
cal changes beyond age-related alterations. According to the
Beckman Initiative Classification [31], we allowed drusen be-
low 63 µm in size as only visible alteration, as they normally
do not result in visual impairment. A set of healthy retinas
and corresponding weak labels obtained using [24] are used
to train a Bayesian deep learning model for segmenting the
retinal layers. Pixel-wise epistemic uncertainty estimates are
applied at test time to identify anomalous regions in new given
samples. While pathologies such as subretinal fluid are known
to alter the appearance of the retina, some other are strictly
related with the layers (e.g. the disorganization of the retinal
inner layers, or DRIL) [23]. Therefore, using retinal layer
information is an appropriate way of incorporating anatomical
knowledge into the model. At the same time, no labels of the
target class (i.e. anomalies) are needed for training.

B. Related Work

Biomarker discovery and analysis have benefited by the
incorporation of deep learning [32]. Non data-driven ap-
proaches require hand-crafting techniques to capture a specific
biomarker, and then assess its statistical power, e.g. by means
of linear discriminant analysis [33]. Alternatively, supervised
deep learning avoids biases due to manual design of features
by learning them from data. These techniques have been
extensively used to identify pre-defined pathological markers
such as disease lesions [4], [7], [8], [34]. Their main drawback
is that they require a training set with manual annotations of
the region of interest. Thus, the markers have to be known
in advance–restricting the possibility of using these models
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Fig. 2. Overview of the proposed method. A Bayesian U-Net is trained on normal B-scans, using weak labels of the retinal layers generated using the Garvin
et al. [24] segmentation method. The retinal layers are indicated on the right hand side. Given an unseen B-scan, MC dropout sampling is used to retrieve
epistemic uncertainty maps, which are subsequently post-processed using majority-ray-casting to obtain the final anomaly segmentations.

for biomarker discovery–and the training set has to include
enough representative examples of the marker appearances.
Alternatively, some authors propose to predict pre-defined clin-
ical parameters using image-based regression techniques [32],
[35]. These methods assume that the networks will learn to
capture features in the images that are correlated with relevant
target values. Appropriate visualization techniques are needed
to understand the properties of the model and to identify
the features taken into account for prediction [32], [35]. The
regression target needs to be pre-defined, and it can be either a
functional parameter [32] or a diagnosis [35]. Furthermore, a
representative sample of diseased subjects has to be included in
the training set if the target parameters are related to a specific
condition. Moreover, due to the complexity of the prediction
task, a larger number of training samples is required compared
to supervised segmentation approaches.

Anomaly detection, on the contrary, identifies pathological
areas that are implicitly defined by healthy data: normal
appearance is first learned from this data, and anomalies
are obtained in new data by detecting the difference to this
representation. This overcomes the need of a sufficiently
representative cohort of diseased patients, to select features
with stable predictive value for a given target. Instead, first
anomalies are detected based on a model trained on large-
scale healthy data, and highlighted in the images as blob-
shaped segmentations. In a second step, these candidates–
typically only a fraction of the overall data–can be mined more
efficiently for discovering new biomarkers and/or predictors.
These techniques can be applied as a first step in discovering
novel risk factors of diseases, extending the vocabulary of
known biomarkers, and therefore our knowledge about the
underlying pathogenesis of diseases [14], [17], [36].

Multiple techniques have been proposed in the past for
automated anomaly detection in OCT images [14], [17], [37],
[38]. Shape models were used in [37] to perform drusen
detection. In [38], the appearance of normal OCT B-scans was
modeled with a Gaussian Mixture Model (GMM), recognizing
anomalous B-Scans as outliers. Entire OCT volumes were
classified as normal or anomalous, based on the number
of outliers. Deep unsupervised anomaly detection has been
recently presented in [14], [17], both relying on a repre-
sentation learned at patch-level. Schlegl et al. [17] used a
Generative Adversarial Network (GAN) to learn a manifold
of normal anatomical variability, and anomalies were detected
as deviations from it. A multi-scale autoencoder approach
combined with a one-class support vector machine (SVM)
was presented in [14] to segment anomalies and to identify
disease clusters subsequently. None of these anomaly detection
approaches incorporate the use of uncertainty.

To the best of our knowledge, uncertainties were not used
for anomaly detection before. In particular, Nair et al. [34]
used Bayesian supervised learning to segment multiple sclero-
sis lesions in MRI. Sedai et al. [39] applied a similar method
for layer segmentation in healthy OCT scans. In both works,
aleatoric uncertainty was used for training. In [34], epistemic
uncertainty was applied to refine the segmentations, while
in [39] the epistemic uncertainty was provided as qualitative
feedback to users. Monte Carlo sampling with dropout was
used in [36] to average multiple outputs from an autoencoder
trained in healthy data. Anomalies were detected as differences
between the input and the reconstructed output. In this paper
we aim for a different task compared to these previous ap-
proaches: we use the epistemic uncertainty of a model trained
on healthy subjects to discover anomalies in new data.
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C. Contributions

We propose a novel approach for anomaly detection based
on epistemic uncertainty estimates from a Bayesian U-Net,
trained for segmenting the anatomy of healthy subjects. To
the best of our knowledge, this is the first method to pose the
segmentation of anomalies in this way. In addition, our model
is trained on weak labels instead of manual annotations, which
allows to increase the training data without major efforts. We
evaluate our model in the context of anomaly detection in
retinal OCT scans. We introduce a heuristical post-processing
technique, namely majority-ray-casting, to ensure compact-
shape consistency in the final anomaly segmentations. Our
approach is able to obtain a clear performance improvement
compared to previous state-of-the-art in anomaly detection in
OCTs [14]. This manifests in a Dice of 0.789 on the anomaly
test set regarding the pixel-wise segmentation task, while
achieving almost perfect volume-level separation of healthy
and diseased volumes with late wet AMD, dry GA, DME and
RVO, solely based on the area of detected anomalies. Finally,
we also qualitatively observed high uncertainty estimates in
regions with other deviations such as imaging artifacts in
normal subjects.

II. METHODS

An overview of the proposed approach is illustrated in
Fig. 2. First, we train a Bayesian U-Net model on normal
cases to segment retinal layers, using weak labels automat-
ically generated with a graph-based segmentation approach.
Secondly, this model is applied together with Monte Carlo
dropout [18], [19] to retrieve pixel-level epistemic uncertainty
estimates. Finally, we introduce a simple post-processing step,
majority-ray-casting, to transform the uncertainty maps into
compact segmentations of anomalies. This technique closes
the gap between the shape of layers and anomalies based on
the assumption that anomalies in OCT are compact and not
layered.

Section II-A describes the general idea of training a seg-
mentation model from a healthy population using weak labels.
Section II-B focuses on the application of the epistemic
uncertainty estimates of this model for anomaly detection. The
domain-specific pipeline for applying the anomaly detection
approach in retinal OCT scans is presented in Section II-C

A. Training on Healthy Population

Let X ∈ Ra×b be a set of normal images with a× b pixels
size, and Y ∈ Ya×b the set of corresponding weak, target label
maps, with Y = {1, ...,K} the set of all possible classes. A
segmentation model aims at finding the function fW : X → Y
by optimizing its set of weights W . In this study, we model fW
using a multiclass U-Net [22]. This widely used segmentation
architecture is composed of an encoding and a decoding part
with skip-connections: the encoder contracts the resolution of
the input image and captures the context and relevant features
on it, while the decoder performs up-sampling operations to
enable precise localization of the target class and restores the
input resolution. The skip-connections, on the other hand, al-
low to better reconstruct the final segmentation by transferring

feature maps from one encoding block to its counterpart in
the decoder. Our instance of the U-Net (Fig. 3) comprises
five levels of depth, with 64, 128, 256, 512 and 1024 output
channels each. Dropout is applied after each convolutional
block, which consists of two 3×3 convolutions, each followed
by batch-normalization [40] and a rectified linear unit (ReLU).
2×2 max-pooling and nearest-neighbor interpolation are used
for downsampling and upsampling, respectively. The network
is trained with the cross entropy loss objective function.

B. Exploiting Epistemic Uncertainty for Anomaly Detection

Epistemic uncertainty was observed to increase when esti-
mated on image samples whose appearance differ significantly
from those on the training data [20]. We propose to exploit
this characteristic to identify and segment anomalies in unseen
scans.

Formally, Bayesian deep learning aims to find the posterior
distribution over the weights of the network p(W |X,Y ), in
order to derive epistemic uncertainty. In general, retrieving
the actual true underlying distribution is computationally in-
tractable, so it needs to be approximated. Gal et al. [18]
proposed to approximate the posterior with the variational
distribution q(W ), i.e. by using dropout also at test time
to retrieve MC samples. This is theoretically equivalent to
modelling q as a Bernoulli distribution with probability p
equal to the dropout rate. It has been shown in [18] that
the Kullback-Leibler divergence between the approximate and
posterior distribution:

KL(q(W )||p(W |X,Y )) (1)

is minimized by optimizing the cross-entropy loss during
training. Hence, training the network with gradient descent and
dropout not only prevents over-fitting but also encourages the
network to learn a weight distribution that properly explains
the training data.

At test time, given an unseen image x (e.g. a B-scan), the
pixel-wise epistemic uncertainty is estimated as follows. First,
n predictions y(i), i ∈ 1, . . . , n are retrieved by applying the
model fW∼q(W ) on x. The pixel-wise variance σ2 is then
computed for each class k ∈ Y by:

σ2
k(p) =

1

n

n∑
i

(
y
(i)
k (p)− µk(p)

)2
(2)

where p is a pixel coordinate and µk is the average of the
n predictions for the k-th class. The final uncertainty map u
is obtained by averaging all σ2

k estimates over the K class-
specific variances in a pixel-wise manner:

u(p) =
1

K

K∑
k

σ2
k(p). (3)

C. Application of anomaly detection in retinal OCT scans

We apply the uncertainty-based anomaly detection approach
to retinal OCT scans. The training set consists of pairs (X,Y )
composed of a healthy OCT B-scan X and its associated
weak labelling map Y of the retinal layers. Y is pre-computed
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Fig. 3. Overview of the network architecture. Each convolutional block has the following structure: 3-by-3 convolution + batch-normalization + ReLU +
3-by-3 convolution + batch-normalization + ReLU. All convolutional layers use a stride of 1 and zero padding. A combination of nearest neighbor upsampling
and a convolutional layer is applied instead of transposed convolutions.

Fig. 4. Majority-ray-casting post-processing technique. Red arrows indicate
ray hits with a binary (white, =1) region, while the gray arrow indicates a
non-hit.

using the graph-based surface segmentation algorithm de-
scribed in [24]. Such a method has proven to be effective
in normal subjects and is widely applied in ophthalmological
studies [41], [42]. The set Y of labels comprises K = 11
classes corresponding to background and 10 retinal layers
(Figure 2): nerve fiber layer (NFL); ganglion cell layer (GCL);
inner plexiform layer (IPL); inner nuclear layer (INL); outer
plexiform layer (OPL); outer nuclear layer (ONL); inner
segment layer (ISL); inner segment - outer segment (IS-OS)
junction; outer segment layer (OSL) and the retinal pigmented
epithelium (RPE).

We use these weak labels to train the Bayesian multiclass
U-Net described in Section II-A. The neural network provides
both a segmentation map and an uncertainty estimate. We only
use the latter at test time, as our purpose is not to accurately
identify the retinal layers but to segment retinal abnormalities.

A first estimate of the anomalous areas is obtained by
thresholding u with a threshold t. To eliminate spurious pre-
dictions, every connected component with an area smaller than
s pixels is removed, resulting in a binary map B. The most
straightforward way to highlight anomalies in an input B-scan
is by providing compact, blob-shaped smooth segmentations
surrounding the abnormal areas. As can be seen Fig. 4, B is
not smooth enough to fit that shape.

We introduce a simple but effective technique, majority-
ray-casting, that iteratively postprocesses the binary map B

and results in a more shape consistent anomaly segmentation.
This approach assumes that the retina is approximately hori-
zontally orientated in the B-scan, which is usually the case. A
schematic representation of the method is provided in Fig. 4.
On an iteration j, in a first step four rays are sent to each of the
cardinal coordinates (left, right, top and bottom) from every
pixel p that satisfies Bp = 0. In other words, each black pixel
in Fig. 4 is used once as reference point to cast the four rays.
Each ray that ”hits” a pixel with value 1 before reaching the
border of B increases a pixel-wise ray-casting vote V (Bp) by
1. Hence, the maximum voting value of V (Bp) for each pixel
p can be 4. In a second step, all pixels with votes greater than
or equal to a hyper-parameter v(j) are then set to 1, resulting
in a new binary map B(j). Formally, this can be written as:

B(j)
p =


1 if Bp = 1

1 if V (Bp) ≥ v(j)

0 if V (Bp) < v(j).

(4)

Notice that this process can be iteratively repeated using B(j)

as an input to the next iteration, and a different value of
v(j) can be used at each iteration. Finally, morphological
closing and opening operations with a radius of mc and mo,
respectively, were applied to remove artifacts.

III. EXPERIMENTAL SETUP

We empirically evaluated our method in our application
scenario. In particular, we studied: (1) if our method can
accurately identify anomalous regions in retinal OCT data,
(2) the contribution of each of the individual components of
our proposed approach in the final results, (3) the lesion-wise
detection performance of the method, and (4) the volume-wise
classification accuracy of the algorithm, based on the average
number of anomalous pixels per B-scan for each volume.

a) Data: We used six data sets of macula centered
Spectralis (Heidelberg Engineering, GER) OCT scans, with
512 × 496 × 49 voxels per volume, covering approximately
6mm × 2mm × 6mm of the retina. The first two datasets
normal and normal evaluation comprise 226 and 33 healthy
volumes, respectively, which were selected from 482 / 209
contralateral eye scans of patients with Retinal Vein Occlusion
(RVO) / AMD in the other eye. According to the definition
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of healthy provided in Section I, volumes with pathological
changes beyond age-related alterations were excluded. The
normal data set was randomly split on a patient basis into
198 training and 28 validation cases to train our segmentation
model. The normal evaluation set, on the other hand, was only
used for evaluation purposes. The third dataset late wet AMD
comprised 31 OCT volumes (5 validation, 26 test) with active
neovascular AMD. A retina specialist manually annotated all
the areas containing pathologic features, resulting in pixel-wise
annotations of anomalous regions. All these datasets have been
already used for training and evalution in [14], using the same
configuration. This allows a direct comparison with such an
approach.
Four volume-wise disease classification experiments were per-
formed by comparing the anomalous areas in healthy subjects
vs diseased. The late wet AMD test set, 30 DME, 25 RVO and
34 dry GA volumes were used separately for this purpose.

b) Training details: Intensity values of each individual
B-scan were rescaled between 0 and 1 before being fed to the
network. We used Kaiming initialization [43], Adam optimiza-
tion [44], and a learning rate of 1 × 10−4 (multiplied by 0.2
every 5 epochs). During training, random data augmentations
were applied, including horizontal flipping, rotation up to 10◦,
horizontal / vertical translations up to 5% / 20% of the B-scan
size and scaling up to 2%. The network was trained for 25
epochs on the normal training set, and the model with the best
average Dice for layer segmentation on the normal validation
set was selected for evaluation. We trained the model with
different dropout rates p = {0.1, 0.2, 0.3, 0.4, 0.5}, and the
model with the highest Dice for anomaly segmentation on the
late wet AMD validation set was selected for performance
evaluation on the late wet AMD test set.

c) Anomaly detection details: At inference time, 50 MC
samples with dropout were retrieved per B-scan. For post-
processing, we used s = 10, mc = 4, and mo = 2, where
these parameters were selected empirically by qualitatively
analyzing the results in a few B-scans from the late wet
AMD validation set. Two iterations of the majority-ray-casting
algorithm were performed, using v(1) = 3 and v(2) = 4,
and 20 different thresholds t = {0.01, 0.02, ...0.19, 0.20} were
evaluated on the lateAMD validation set. The best threshold
according to the average validation Dice was selected for per-
formance evaluation on the lateAMD test set. This calibration
ensured to retrieve compact annotations consistent with the
desired blob-shape appearance.

A. Segmentation accuracy

The segmentation accuracy was evaluated using precision,
recall and Dice, which are standard metrics for binary seg-
mentation tasks. Notice that performing a ROC curve based
evaluation is unfeasible in our case as our method does not
produce pixel-level likelihood predictions of anomalies, but
binary labels.

To assess the contribution of each individual component of
our proposed approach in the final results, we performed a
series of ablation experiments. It is worth mentioning that the
test set was not used for designing the method: all our design

decisions were based on the validation set performance. These
ablation studies are performed on the test set only to illustrate
how changing our model can affect the results. For the sake of
brevity, from now on we will refer to the full method described
in Section II as WeakAnD (from Weak Anomaly Detection).

• Binary layer-segmentation: While the proposed WeakAnD
is trained with 11 layer classes, we trained a second net-
work, namely WeakAnD(binary), for the binary segmenta-
tion task ”retina/background”. This experiment allows to
assess the influence of annotation details in the anomaly
detection performance.

• Remove majority-ray-casting: To show the necessity of
the majority-ray-casting approach, we compared against a
simple post-processing only thresholding the uncertainty
maps u (WeakAnD (thresholding)). We also replaced the
majority-ray-casting step with a straightforward convex
hull step (WeakAnD (convex-hull)).

• Remove morphological operations: The final morpholog-
ical closing and opening operations were removed in this
ablation experiment (WeakAnD (w/o closing/opening)).

• Layer flattening: As an additional pre-processing step
for the lateAMD dataset, the retina was flattened using
the bottom layer (Bruch’s Membrane - BM), projecting
it onto a horizontal plane, following the pre-processing
approach in [14]. Our hypothesis is that flattening the
retina helps to meet the assumption of majority-ray-
casting, i.e. horizontal orientation of the retina.

B. Lesion-wise Detection

We are interested in evaluating the detection performance
of the proposed approach on a lesion-wise basis. To this end,
we define each connected anomaly within a B-scan as a single
lesion (e.g., Fig. 7(b) presents two lesions). A Dice index is
computed for each individual lesion to quantify its overlap
with its corresponding manual annotation. A thresholding
according to a reference value d is then performed, where the
amount of true positives is counted as the number of lesions
with a Dice index higher than d. These values are used to
compute lesion-detection Recall (LD-Red) and lesion-detection
Precision (LD-Prd):

LD-Red =
TPd

TPd + FNd
(5)

LD-Prd =
TPd

TPd + FPd
(6)

where TPd, FNd and FPd are the number of true positive,
false negative and false positive lesions for a given d. By
computing these metrics for each possible d ∈ [0, 1], we can
then plot both LD-Re and LD-Pr curves. These plots allow
to assess the stability of the Dice values with respect to the
lesion detection performance. Notice that this cannot be used
to select an operating point as it is defined over all possible
dice values and not on lesion probabilities.

C. Volume-wise Disease Detection

We conducted four additional experiments to evaluate if
the proposed method can be used to discriminate diseased
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TABLE I
QUANTITATIVE RESULTS ON THE LATE WET AMD VALIDATION SET WITH

VARYING DROPOUT PARAMETERS.

Dropout Dice

0.1 0.783 (0.05)
0.2 0.778 (0.02)
0.3 0.796 (0.03)
0.4 0.798 (0.03)
0.5 0.783 (0.03)

TABLE II
QUANTITATIVE RESULTS OF ANOMALY DETECTION ON THE LATE WET

AMD TEST SET.

Method Precision Recall Dice

DDAEent [14] 0.47 (0.12) 0.63 (0.06) 0.53 (0.09)
Entropy of Soft Predictions 0.600 (0.08) 0.622 (0.09) 0.606 (0.07)
WeakAnD 0.739 (0.06) 0.808 (0.07) 0.768 (0.03)
WeakAnD (with layer-flattening) 0.748 (0.06) 0.844 (0.07) 0.789 (0.03)

versus healthy patients and to further assess the behavior of
our approach on healthy cases. Without additional training,
the average anomalous area per B-scan for each volume was
directly used as a discriminative feature to separate between
healthy and diseased cases. The following setups were used:
normal evaluation vs late wet AMD test set, normal evaluation
vs GA, normal evaluation vs RVO and normal evaluation vs
DME.

IV. RESULTS

Quantitative results for anomaly detection are provided
in Table II. Two baselines are included: the state-of-the-art
method described in [14] and an additional approach based on
replacing our epistemic uncertainty estimates by the entropy
of the soft predictions of the layers. Notice that majority-
ray-casting was also applied to the entropy-based baseline to
ensure a fair comparison. It can be seen that the proposed
approach outperformed the two baselines by a large margin.
When layer-flattening is applied to pre-process the OCT
volumes as in [14], an improvement in performance is also
observed, with a statistical significant increment in the Dice
values from 0.768 to 0.789 (paired Wilcoxon signed-rank test,
p = 0.00007). The final WeakAnD model used a threshold
of t = 0.10 and a dropout rate of p = 0.4. However, we
experimentally observed that the performance on the validation
set was not too sensitive to the dropout parameter (Table I.

Qualitative anomaly segmentation results obtained in the
late AMD test set are shown in Fig. 5. The central B-scans,
corresponding to the volumes in which our method performed
best/worst in terms of Dice, are shown in the top/bottom
two rows. An additional example of a non central B-scan is
depicted in Fig. 1. Further qualitative results in DME, RVO
and GA cases are depicted in Fig. 11 and in the supplementary
material.

A scatter plot comparing the total area (in pixels) of
anomalies (as manually annotated by the expert) and the
level of uncertainty of the segmentation model is depicted in
Fig. 6. Each point corresponds to an individual OCT volume

TABLE III
QUANTITATIVE RESULTS OF THE ABLATION STUDIES, AS EVALUATED ON

THE LATE WET AMD TEST SET.

Method Precision Recall Dice

WeakAnD (thresholding) 0.614 (0.05) 0.504 (0.06) 0.550 (0.04)
WeakAnD (binary) 0.716 (0.07) 0.620 (0.12) 0.655 (0.07)
WeakAnD (convex-hull) 0.708 (0.07) 0.836 (0.08) 0.761 (0.04)
WeakAnD (w/o closing/opening) 0.727 (0.06) 0.815 (0.07) 0.765 (0.03)
WeakAnD 0.739 (0.06) 0.808 (0.07) 0.768 (0.03)

in the late wet AMD test set. The linear regression line for
the corresponding values is also included in the plot. The
correlation between variables, as measured using the Pearson
correlation coefficient, is ρ = 0.91.

a) Segmentation Accuracy: Table III provides quantita-
tive results of the conducted ablation studies, while qualitative
results are shown in Fig. 7. It can be observed that all the
ablations resulted in a performance loss, with different quan-
titative and qualitative effects. In particular, the importance of
using a fine-grained layer segmentation is highlighted by the
drop in the observed evaluation metrics when using a binary
segmentation.

b) Lesion-wise Detection: Lesion-wise precision and re-
call curves are shown in Fig. 8. The corresponding curves
for the baseline methods are also included for comparison
purposes.

c) Volume-wise Disease Detection: Fig. 9 depict his-
tograms for the volume-wise disease detection experiment,
both for the two baselines ( [14] (a) and entropy (b)) and
our method (c). Red bars correspond to patients from the
late wet AMD data set, while green bars are associated to
patients in the normal evaluation set. The horizontal axis
represents the average number of anomalous pixels per B-scan
for each volume, while the vertical axis indicates the number
of patients with a similar anomalous area. Fig. 9 (b) and (c)
shows no overlap between the healthy and the abnormal sets,
while Fig. 9 (a) does. Qualitative examples of the anomalies
detected in healthy cases from the normal evaluation set are
depicted in Fig. 12. Both images correspond to the cases with
the largest anomalous area. The detected anomalies in these
cases correspond to imaging artifacts (Fig. 12, top) or small
deviations from normal retinas such small drusen deposits
(Fig. 12, bottom). A small false positive is observed at the
center of the fovea.

Fig. 10 presents scatter plots showing the average number
of anomalous pixels per B-scan for each diseased/healthy
volume in our volume-wise classification experiments. As
in Fig. 9, it can be seen that this feature is an almost
perfect predictor for this application. Qualitative results of the
central B-scan of DME, RVO and GA cases, respectively, are
presented in Fig. 11. The anomalous region detected in Fig. 11
(a) covers parts of the retina with intraretinal cystoid fluid.
The segmentation in Fig. 11 (b) shows a similar behaviour,
although it also includes areas of intraretinal hyperreflective
foci. Finally, Fig 11 (c) illustrates that our method is also
capable of selectively detecting areas of RPE atrophy and
neurosensory thinning in eyes with GA.
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Fig. 5. Qualitative results of the proposed method, on the late wet AMD test set. Central B-scans of volumes in which the proposed method performed
best/worst in terms of the Dice index are shown. The corresponding Dice values are 0.82, 0.81, 0.72 and 0.72, from top to bottom. The last column indicates
the overlap between the manual annotations of anomaly in green and the prediction of anomaly by our model in red.
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Fig. 6. Correlation between the total amount of uncertainty and the area of
anomaly annotations. Each point in the plot corresponds to one OCT volume
in the late wet AMD test set. The least-squared-fit line as well as the Pearson
correlation coefficient ρ are provided.

Fig. 7. Qualitative results of the ablation studies, showing anomaly seg-
mentation results on an exemplary sample. (a) Original B-scan, (b) Manual
annotation, Segmentation results of (c) WeakAnD (binary), (d) WeakAnD
(thresholding), (e) WeakAnD (convex-hull) and (f) WeakAnD.

V. DISCUSSION

We propose to detect and segment anomalies in retinal OCT
images using epistemic uncertainty estimations. The approach
is built on the assumption that epistemic uncertainty correlates
with unknown anatomical variability (anomalies), not present
in the training data. This claim is supported by the results,
in particular by the high correlation (ρ=0.91) between the
amount of anomalous area and uncertainty, as observed in
Fig. 6. Another alternative to identify anomalies is to use
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Fig. 8. Lesion detection Recall (LD-Re) and Precision (LD-Pr) curves for the
proposed approach (solid) and the baseline methods. The low LD-Precision
curve of [14] can be explained by its noisy segmentation results which lead
to several tiny false positive lesions.

the entropy of the soft predictions of the layer segmentation
method. Using the soft predictions of neural networks directly
has been previously explored as an alternative to identify
out-of-distribution samples [45], [46]. We used this idea as
a baseline to compare with and we observed that epistemic
uncertainties are more powerful to reflect abnormal changes
with respect to the training set (Table II, Fig. 8). We believe
this is caused by the softmax predictions capturing different
information than uncertainty estimates obtained through MC-
sampling. The soft predictions indicate the probability of a
given pixel belonging to a specific class, while an uncertainty
estimate provides information regarding the confidence of the
network about assigning a specific likelihood. As pointed out
by [18], a model can be uncertain in its predictions even with
a high softmax output for a specific class. Nevertheless, it is
interesting to observe that this baseline is still able to separate
between normal and late wet AMD cases based on anomalous
area, as observed in Fig. 10.

We also took advantage of weak supervision by training our
segmentation model with labels provided by an existing auto-
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Fig. 9. Histograms of the volume-wise classification experiment for detecting late wet AMD cases. Results of (a) DDAE [14], (b) entropy of soft predictions
and (c) our method. The horizontal axis represents the average number of anomalous pixels per B-Scan for each volume and the vertical axis indicates the
number of patients. Green and red denote patients from the normal evaluation and the late wet AMD test datasets, respectively. Note that a separate overview
of the classification results of our method is plotted in Fig. 10.
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Fig. 11. Qualitative results of the proposed method on (a) DME, (b) RVO
and (c) GA cases.

mated approach [24], which is known to perform accurately in
healthy scans. Thus, instead of relying on a large training set
of normal and diseased patients with costly per-pixel manual
annotations of anomalies, we proposed to train our approach
using a normal data set, providing anatomical information via
weak labels. Our empirical observations showed that using this
alternative still results in high performance. Nevertheless, the
segmentation U-Net is not limited to be trained with weak
labels: we argue that it could also be trained using manual
annotations without loss of generality.

Compared to the baseline method for anomaly detection
in OCT [14], our approach achieved significantly better re-
sults in terms of several quantitative metrics (Table II). In-
terpreting these pixel-wise quality measures requires taking
into consideration that manually annotating anomalies is a

Fig. 12. Anomaly detection in normal scans. Two B-scans from the normal
evaluation dataset with the largest anomalous area are shown. From left
to right: Original B-scans, uncertainty maps and corresponding anomaly
segmentation results. Top row: cut edge artifact (blue arrow). Bottom row:
small drusen (blue arrows) and false positives (red arrows).

difficult task: transitions between healthy and diseased scans
are continuous, often unclear, hard to define and exposed
to subjective interpretation. Therefore, ensuring exact and
consistent ground truth labellings is nearly impossible. The
high degree of overlap between the outputs of our model
and the manual annotations indicates then that the proposed
approach is able to approximate the performance of a human
expert. This is also supported by the fact that the worst
observed Dice value (0.72) is relatively high. To complement
these interpretations, we also evaluated the performance of the
proposed approach to detect lesions as such. The evaluation
of the lesion-wise detection experiment, depicted in Fig. 8,
linked quantitative pixel-based evaluation metrics with lesion-
level detection capabilities. It can be seen that increasing
the requirement of Dice performance d for lesions from 0.0
to 0.6 only decreases the lesion detection performance by
10%, as measured in terms of lesion detection precision and
recall. These results indicate that the ability of the method to
accurately identify the borders of the anomalies does not have
a significant effect in the lesion detection performance, as most
of the overlap area with the human expert annotation is located
in affected tissue. In other words, most of the changes in Dice
are explained by differences in the borders of the anomalous
regions (as seen in Fig. 5, right column).

Moreover, it was observed that the size of the predicted
anomalous areas was an almost perfect discriminator to clas-
sify normal vs. diseased subjects. We hypothesize that this is a
consequence of our method being able to detect abnormalities
in diseased subject without oversegmenting false positives in
healthy subjects (Fig. 12). Nevertheless, while our method
is able to accurately identify abnormal cases from normal
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based only on the amount of detected anomalous area, further
research should be made to evaluate its potential in a screening
setting, e.g. by evaluating its discrimination ability in early
diseased cases.

Although our method does not rely on ground truth annota-
tions of abnormalities for training, it still has hyperparameters
that need to be optimized. In our experiments, we used a
late wet AMD validation set comprising 5 OCT volumes. We
observed that the method is not too sensitive to changes in
the dropout rate (Table I). We qualitatively recognized that
changes in the amount of dropout mostly affect the magnitude
of the uncertainty values, although their distribution in the
image remains relatively stable. This effect is mostly absorbed
by the post-processing stage, resulting only in slight variations
of the final segmentations. On the other hand, our classification
results in different diseases indicate that using a validation set
with only one specific condition might be enough to ensure
good generalization.

Finally, our approach also reported a significantly better
performance than the DDAE method [14] when evaluated both
on a lesion and a volume basis. This might be a consequence
of the noise in the segmentations generated by the baseline
approach, which results in several small isolated regions that
increase the false positive rate. Nevertheless, it is important
to note that [14] tackles a more difficult task, not only to
segment anomalies but to identify categories of them. This
restrained such an approach to a localized representation that
enables subsequent clustering on local level. In contrast, our
method only aims to provide accurate pixel-wise segmentation
for the detected abnormalities, not specifically designed for
a subsequent clustering step of anomalies. In addition, the
method in [14] does not incorporate anatomical information
during training nor post processing.

The qualitative analysis of the results in Fig. 5 revealed
that the uncertainty maps showed high values surrounding
subretinal fluid (SRF), a concave form in cases of pigment
epithelial detachments (PED) and dense patterns in regions
of hyperreflective foci (HRF). In general, the segmentation
model predicted the background class with high confidence
in large areas of fluid, probably due to missing edges and/or
dark appearance in those regions. This observation highlights
the necessity of appropriate post-processing to obtain smooth
segmentation maps (Table III).

From the ablation study is also possible to conclude that
each part of the method is important to ensure accuracy and
consistent results. In particular, we observed that using less
informative target labels for the segmentation approach e.g.,
by targeting the whole retina instead of its constitutive layers
(WeakAnD (binary) in Table III) decreases the performance for
anomaly detection (Dice index drop of 14.7%). We observed
that the uncertainty maps produced by the binary alternative
were not as detailed and dense as the ones of the proposed
method. This caused segmentation shapes inconsistent with
the manual anomaly annotations (see Fig. 7(c)), as well as
apparent horizontal and vertical gap-artifacts of segmentation
areas. Considering the fact that the cellular components of the
retina are arranged in a layer-wise manner [47] and pathologies
alter their appearance, using retinal layer information proved

to be a particularly appropriate way to incorporate anatomical
knowledge into the model. This helped to achieve more
representative uncertainty values and, therefore, better results.
For this particular point, it is important to emphasize the
contribution of the post-processing method based on majority-
ray-casting. As observed in Table III, replacing this stage by
other alternative approaches caused drops in performance. Re-
moving majority-ray-casting and only conducting thresholding
of the uncertainty maps (WeakAnD (thresholding)) resulted in
poor quantitative results, decreasing the Dice index by 28.4%.
This is also reflected in Fig. 7(d), where the exemplary seg-
mentation covers not only the anomalous regions but also some
borders between retinal layers. This result was obtained using
an optimal threshold (t = 0.03) selected on the validation
set. Although this might compensate for the discontinuous
property in the area with true positive anomalies, it brings
further layer interfaces to the final segmentation, where a
certain degree of uncertainty is also present. Complementing
thresholding with a convex-hull based post-processing also
caused unwanted artifacts, e.g. in Fig. 7(e), where a small
blob in the top right (remaining after thresholding) caused a
peculiar segmentation. This is a consequence of the inability
of the convex-hull approach to handle multiple non-connected
anomalous areas by definition. On the contrary, the anomalous
area is better captured when applying our majority-ray-casting
method. This indicates the potential of using a relatively
straightforward approach combined with an appropriate post-
processing step in the context of anomaly detection. This post-
processing stage is crucial to achieve a blob-shaped segmenta-
tion, not targeting a specific disease appearance. Our approach
is intended to help to transfer the layered output of the
uncertainty estimates to a compact segmentation surrounding
abnormalities, which we believe is the most straightforward
way to highlight them in general. This means that majority-
ray-casting allows to obtain an easier-to-interpret result. The
previously published approach is already able to retrieve such
a shape (Fig. 3 in [14]), although with significant false positive
detections. Our thresholded uncertainty maps, on the other
hand, slightly outperform [14] in terms of Dice, but are not
able to retrieve such a blob-shape due to the partial blindness
of the uncertainty estimates. This is line with what can be
seen from Table II and Table III, where [14] reported lower
precision but higher recall than our method. Finally it is worth
mentioning that, in addition to fluid related lesions (Fig. 5
and Fig. 11 (a)), our approach detects other anomalies such as
drusen (Fig. 12, bottom row), hyperreflective material (Fig. 11
(b)), DRIL or GA lesions (Fig. 11 (c)). This demonstrates that
the presented method allows to highlight a variety of retinal
abnormalities in multiple diseases.

We observed that the network detected anomalies only
in the area ranging from the top of the NFL to the RPE.
We believe that this is a consequence of the model being
restricted by the anatomy used for training. A similar behavior
was observed before in the binary model, trained to segment
the retina and the background. By using the weak labels
generated using the Garvin et al. [24] method, our network
is unable to capture representative uncertainty estimates in
regions that are jointly labeled as background. Our hypothesis
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is that the network optimizes its loss function by focusing
more on the non-background layer labels. This makes the
network invariant to changes in areas below the RPE and above
the vitreous-macular interface, and therefore does not show
uncertainties there. Incorporating labels for other layers such
as the choroid might allow the model to explicitly learn the
normal characteristics of these regions, and thus show higher
uncertainty estimates when deviations from this appearance
are observed (e.g. due to hypertransmision).

Finally, it is worth pointing out a potential limitation of the
majority-ray-casting algorithm, related to the internal distri-
bution and localization of anomalies within the retina. Since
the post-processing algorithm assumes that areas surrounded
by uncertainties are anomalous (Fig. 2), there could be spe-
cific clinical scenarios in which this assumption does not
hold: e.g. in between three independent anomaly detections
(Fig. 12, bottom row, bottom red arrow). Hence, this can lead
to oversegmentation. In some cases, we also observed false
positives in the fovea depression, caused by a thinning in
the top retinal layers (Fig. 12, bottom row, top red arrow).
Nevertheless, anomaly detection approaches are needed to
reach high levels of sensitivity when applied for screening or
detecting pathological areas, and false positives are tolerated to
a certain extent. Therefore, oversegmentation might not harm
the final application. Moreover, the volume-wise disease detec-
tion experiment showed perfect separation between diseased
and healthy subjects using only the amount of abnormal area
for discrimination.

VI. CONCLUSION

We proposed a weakly supervised anomaly detection
method based on epistemic uncertainty estimates from a
Bayesian multiclass U-Net model, with application in retinal
OCT analysis. The segmentation approach was trained on
a cohort of normal subjects to characterize healthy retinal
anatomy. No annotations of the target class (anomalies) were
used to learn that model. Instead, we took advantage of the fact
that traditional segmentation methods work accurately in well-
defined environments such as healthy populations, allowing to
easily obtain large amounts of segmented data. Following this
perspective, we used an automated method [24] to generate
weak labels for the individual retinal layers. During test time,
unseen B-scans were processed by the Bayesian network,
and Monte Carlo sampling with dropout was used to retrieve
epistemic uncertainty estimates. To better exploit its applica-
tion to segment potential anomalies, a novel post-processing
technique based on majority-ray-casting was introduced. The
results showed the importance of this stage to transfer layered
output of the uncertainty estimates to binary masks with a
smooth segmentation of retinal abnormalities. Future work
should investigate how to integrate this prior in the learning
process, reducing the reliance on additional post-processing.

The proposed anomaly detection approach needs only
healthy samples for training, detects the deviation from normal
by exploiting the injected anatomical information of healthy
scans and is therefore–by definition–not limited to a specific
disease or pathology. An extensive evaluation using 33 normal

and 115 diseased OCT volumes (1617 and 5635 B-scans,
respectively) demonstrates that our uncertainty-driven method
is able to detect anomalies under several conditions, outper-
forming alternative approaches. This makes it a promising tool
in the context of biomarker discovery, where the detection
and exploration of atypical visual variability is a fundamental
task. In this context, further research is planned to explore the
suitability of the presented method in the context of biomarker
detection. Furthermore, future work should be focused on
evaluating the applicability of our approach in a screening
setting.

REFERENCES

[1] S. B. Nimse, M. D. Sonawane, K.-S. Song, and T. Kim, “Biomarker
detection technologies and future directions,” Analyst, vol. 141, no. 3,
pp. 740–755, 2016.

[2] A. J. Asman and B. A. Landman, “Robust statistical label fusion through
consensus level, labeler accuracy, and truth estimation (COLLATE),”
IEEE Transactions on Medical Imaging, vol. 30, no. 10, pp. 1779–1794,
2011.

[3] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. Van Der Laak, B. Van Ginneken, and C. I. Sánchez,
“A survey on deep learning in medical image analysis,” Medical Image
Analysis, vol. 42, pp. 60–88, 2017.

[4] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[5] T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. I. Sánchez,
R. Mann, A. den Heeten, and N. Karssemeijer, “Large scale deep learn-
ing for computer aided detection of mammographic lesions,” Medical
Image Analysis, vol. 35, pp. 303–312, 2017.

[6] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,
A. Bagul, C. Langlotz, K. Shpanskaya et al., “Chexnet: Radiologist-
level pneumonia detection on chest x-rays with deep learning,” arXiv
preprint arXiv:1711.05225, 2017.

[7] J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,
S. Blackwell, H. Askham, X. Glorot, B. ODonoghue, D. Visentin et al.,
“Clinically applicable deep learning for diagnosis and referral in retinal
disease,” Nature Medicine, vol. 24, no. 9, p. 1342, 2018.

[8] U. Schmidt-Erfurth, A. Sadeghipour, B. S. Gerendas, S. M. Waldstein,
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