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Abstract—Retinal swelling due to the accumulation of fluid
is associated with the most vision-threatening retinal diseases.
Optical coherence tomography (OCT) is the current standard of
care in assessing the presence and quantity of retinal fluid and
image-guided treatment management. Deep learning methods
have made their impact across medical imaging and many retinal
OCT analysis methods have been proposed. But it is currently
not clear how successful they are in interpreting retinal fluid on
OCT, which is due to the lack of standardized benchmarks. To
address this, we organized a challenge RETOUCH in conjuction
with MICCAI 2017, with eight teams participating. The challenge
consisted of two tasks: fluid detection and fluid segmentation.
It featured for the first time: all three retinal fluid types, with
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annotated images provided by two clinical centers, which were
acquired with the three most common OCT device vendors from
patients with two different retinal diseases. The analysis revealed
that in the detection task, the performance on the automated
fluid detection was within inter-grader variability. However, in
the segmentation task, fusing the automated methods produced
segmentations that were superior to all individual methods,
indicating the need for further improvements in segmentation
performance.

Index Terms—Evaluation, Image segmentation, Image classifi-
cation, Optical Coherence Tomography, Retina.

I. INTRODUCTION

Macular edema is a swelling of the central retina caused
by the leakage from the retinal capillaries and subsequent
accumulation of the leaked fluid within the intercellular spaces
of the retina. It causes sudden and severe loss of vision and
it occurs secondary to a retinal disease such as age-related
macular degeneration (AMD), retinal vein occlusion (RVO)
or diabetic macular edema (DME). These three conditions
constitute the most common cause of vision loss in developed
countries, affecting a large number of people. In particular,
AMD is the leading cause of blindness in developed countries
affecting older patients [1], while RVO and DME are major
causes of vision impairment in working age people.

An effective treatment for macular edema exists in the
form of anti-vascular endothelial growth factor (anti-VEGF)
therapy [2]. However the effectiveness of the treatment
depends on frequent monitoring and an early detection of
the disease. Furthermore, anti-VEGF drugs are expensive and
have to be administered frequently for an extended period of
time. Consequently, they pose a heavy socio-economic burden
on both the patient and the healthcare system. Thus, several
personalized treatment regimens have been developed, such
as the pro re nata (PRN, “as needed") and treat and extend
(T&E). For these regimens, injection decisions are guided by
the re-occurrence of retinal bleeding or fluid accumulation,
resulting in a lower number of injections while keeping
the visual benefits comparable to those achieved with more
frequent, monthly injections [3], [4].

Accumulated fluid causing macular edema can be readily
imaged using optical coherence tomography (OCT) [5], [6].
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Fig. 1. Retina with macular edema imaged with OCT scanners: Cirrus,
Spectralis, and Topcon, from three different vendors. The slices (B-scans)
are of the same patient and approximately at the same anatomical position.

Even though it is a recently introduced modality, OCT has
already become a standard of care impacting the treatment of
millions of people every year [7]. It obtains a high resolution
3D image of the retina in a fast and noninvasive manner by
acquiring a series of cross-sectional slices (B-scans) [8], [9].
However, OCT volumes are prone to eye motion artifacts and
to low signal-to-noise ratio (SNR) due to speckle. To address
this, device vendors have to decide on a tradeoff between
achieved SNR, image resolution and the scanning time. Thus,
the acquired image quality and scan density can vary widely
between different OCT device vendors as demonstrated in
Fig. 1. It can be observed that the highest image quality was
produced by Spectralis scanner, which reduces the noise by
averaging multiple B-scans of the same anatomical location at
the expense of acquiring fewer B-scans.

Three types of fluid (Fig. 2) are clinically distinguishable on
OCT images and are considered relevant imaging biomarkers
for visual acuity and retreatment indication.

a) Intraretinal Fluid (IRF): It consists of contiguous
fluid-filled spaces containing columns of tissue as the arrange-
ment of such spaces is determined by the Müller fibres, which
are vertical. These spaces when viewed on OCT may appear
as separated hyporeflective cystoid pockets hence sometimes
such fluid is also referred to as cystoid fluid.

b) Subretinal Fluid (SRF): It corresponds to the accumu-
lation of a clear or lipid-rich exudate in the subretinal space,
i.e., between the neurosensory retina and the underlying retinal
pigment epithelium (RPE) that nourishes photoreceptors.

c) Pigment Epithelial Detachment (PED): It represents
detachment of the RPE along with the overlying retina from
the remaining Bruch’s membrane (BM) due to the accumu-

Fig. 2. The three fluid types on a 2D B-scan (above) and as a 3D volume
rendering (below): IRF (red), SRF (green) and PED (blue).

lation of fluid or material in sub-RPE space. It is specific to
AMD as it is associated with the choroidal neovascularization
which originates beneath RPE. PED is composed of three
clinical subtypes: serous, fibrovascular, and drusenoid.

Clinical studies have found these fluids to have important
prognostic values: IRF represents one of the most important
variables associated with vision loss, SRF is associated with
a possibly favorable visual prognosis in AMD [10]–[12],
and PED is considered the primary indicator for progressive
disease activity [13]. In addition, quantifying the extent of
SRF, the change of PED volume and area may prove to be
useful in retreatment decision making [14]–[16]. Therefore it
is becoming very important to quantify the exact amount, and
measure the increase or the decrease of each fluid type to guide
different retreatment regimens.

At present, only qualitative assessment of such fluid lesions
in the form of detecting their presence and evaluating their
extent is incorporated in the clinical workflow to guide anti-
VEGF retreatment decisions. However modern OCT devices
acquire large volumes of information that is difficult to manage
manually and interpret qualitatively. In addition, individual
subjectivity interferes with qualitative estimates of “fluid sta-
bility” or “fluid change”. Thus, automated OCT image analysis
tools that can quantify fluid are expected to be a driving force
behind personalized and predictive medicine in the anti-VEGF
treatment of macular edema [15], [16].

There has been a lot of effort in the recent years from the
medical imaging community to develop automated methods
for retinal OCT fluid quantification which could augment the
clinical workflow. Nevertheless, it is currently not clear what
is the state-of-the-art performance and how it varies across
OCT images from different vendors and across retinas with
different macular diseases. This is mainly due to the lack of
standardized evaluation frameworks and annotated datasets.
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To address the above points and investigate to what ex-
tent current deep learning methods are ready for automated
interpretation of retinal OCT, we invited the medical imag-
ing community to participate in a challenge by developing
and testing automated OCT fluid detection and segmentation
methods. In this paper we introduce a benchmark and report
the analysis of the challenge RETOUCH. The challenge was a
multi-group collaborative effort and featured data annotations
from two clinical centers, images acquired with the three
most common OCT device vendors and from patients with
two different retinal diseases, which allowed for the first
time to make an analysis of method performance and multi-
center grading agreement for all three retinal fluid types
and along those components of variability. The 112 OCT
volumes (11,334 B-scans) and manual annotations for training
are publicly available as an ongoing benchmarking resource
at https://retouch.grand-challenge.org, the largest such avail-
able dataset to date.

II. RELATED PRIOR WORK

OCT was developed in 1990s [8] but only after the im-
plementation of spectral domain SD-OCT, which became
commercially available in 2006 and permitted faster signal
acquisition, did the quality and resolution of images allow
successful use of quantitative image analysis. Thus, retinal
image analysis of OCT is a young field with the automated
segmentation of retinal layers [17] being one of the earliest
applications in healthy and mildly diseased retinas followed
by the fluid segmentation in retinas with macular edema [18].

The first work on fluid segmentation in OCT was a semi-
automated 2D approach based on active contours [19]. To
segment IRF and SRF, one user interaction per lesion and B-
scan was necessary to initialize the contour. A similar level set
approach but using a fast Split Bregman solver was later used
in [20] to generate all candidate fluid regions automatically
which were then manually discarded or selected. However,
semi-automated approaches are labor intensive and hence of
very limited clinical use, devoting the recent work exclusively
to a fully-automated segmentation.

An early automated approach addressed the problem as a
local anomaly detection based on retinal texture and thickness
properties [21], and was applied to determine 2D en-face
footprints of fluid-filled regions. A fully 3D approach based
on voxel classification followed by a graph-cut based segmen-
tation was presented in [22]. A retinal layer-specific voxel-
classification approach was proposed in [23]. A combination of
a fuzzy C-means for initialization followed by an evolution of
level set contour in three orthogonal OCT planes was proposed
in [24]. Methods based on neutrosophic sets coupled with
graph based methods were also proposed recently [25], [26].

A duality of retinal layer and fluid segmentation problems
was recognized early on. Because IRF, SRF and PED are
layer-specific, their segmentation would greatly benefit from
an accurate retinal layer segmentation and vice versa. To
jointly segment both the intraretinal layers and the fluid a
voxel classification followed by dynamic programming based
segmentation was used in [27]. Loosely coupled level sets were

developed in [28] to jointly segment fluid and retinal layers
by modeling the fluid as an additional space-variant layer.
A purely data-driven model with minimum hard constraints
was proposed in [29], based on auto-context and graph-
cut segmentation to simultaneously segment retinal fluid and
layers by learning their mutual interaction.

Segmentation of PED was initially approached as a layer
segmentation problem, due to its deformed shape, having
various subtypes, and its loose definition of sub-RPE fluid and
non-fluid material. In [30], the authors use 2D anomaly foot-
print of [21] as a prior to adjust the multi-layer graph-search
segmentation method. In [31], a multi-surface segmentation
using graph-search is developed with different smoothness
constraints for RPE and BM surfaces. In [32], BM surface
was first estimated from the convex hull of RPE, followed
by a shape-constrained graph-cut. In [33], [34], they segment
SRF and PED fluid pockets by building a 3D fluid probability
map from voxel-level texture, intensity and thickness scores,
followed by a continuous max-flow segmentation.

Since the deep learning showed its great promise in
2012 [35], soon it made its way to retinal OCT analysis.
A multi-scale convolutional neural network (CNN) was first
proposed in [36] for patch-based voxel classification and it
was able to differentiate between IRF and SRF fluid in both a
fully supervised and a weakly supervised setting. CNN showed
success also in segmenting retinal layer boundaries [37] and
classifying vertical columns of OCT A-scans [38]. Currently,
fully convolutional neural nets (FCNN [39] and U-net [40]),
trained end-to-end are the state of the art. They were used
in [41]–[44] to segment IRF, and in [45] to segment both
the retinal layers and the fluid. Large validation studies were
recently performed in [42], [46], which showed that FCNN
can segment fluid across OCT devices and macular diseases.

Automated detection of fluid presence has received much
less attention despite the presence being part of many clini-
cal guidelines for retreatment. The fluid segmentation result
of [23] was also extended to the task of fluid detection,
achieving area under the curve (AUC) of 0.8 and 0.92 for two
expert annotations, respectively. A method validated in [47]
achieved an accuracy of 91% for detecting the presence of
fluid when compared to the majority grading by three retinal
specialists, but it is part of a commercial system so few
methodological details were provided. As part of the IRF
and SRF segmentation validation study, direct application of
the number of segmented voxels in the detection task was
demonstrated in [46]. Recently, presence of intraretinal fluid
considered to be clinically relevant was detected in [48], using
intensity and texture-based features combined with a classifier
learned from representative samples only.

An overview of the selection of the discussed fluid seg-
mentation algorithms, comparing them across a number of
properties is shown in Table I. One can observe the variability
in utilizing 3D context as some methods run segmentations
only in 2D on a B-scan level. This is partly due to very
anisotropic resolution of OCT and possible motion artifacts
across B-scans. Furthermore most methods do not discriminate
between different types of fluid but this leads to limited
clinical applicability due to different associated prognostic
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TABLE I
OVERVIEW OF THE RELATED WORK.

Reference Fluid type OCT vendor Disease Test set
[# volumes]

Evaluation
metric 2D/3D

Xu et al. (2015) [23] any Topcon AMD 30 TPR/TNR 3D
Chiu et al. (2015) [27] any Spectralis DME 10 DSC 2D
Sun et al. (2016) [32] PED Topcon AMD 25 DSC 3D

Wang et al. (2016) [24] IRF, SRF RTVue DME 10 DSC 2.5D
Montuoro et al. (2017) [29] IRF, SRF Cirrus/Spectralis RVO/DME 100/10 DSC 3D

Roy et al. (2017) [45] any Spectralis DME 10 DSC 2D
Lee et al. (2017) [41] IRF Spectralis AMD, RVO, DME 30 DSC 2D

Novosel et al. (2017) [28] SRF Spectralis CSR, DME 25 TPR/FPR, DSC 3D
Wu et al. (2017) [33] SRF, PED Cirrus CSR 37 TPR/FPR, DSC 3D

Gopinath et al. (2018) [43] IRF Cirrus, Spectralis,
Topcon, Nidek, Optovue AMD, RVO, DME 35 DSC 3D

Girish et al. (2018) [44] IRF Cirrus, Spectralis,
Topcon, Nidek AMD, RVO, DME 15 DSC 2D

Venhuizen et al. (2018) [42] IRF Cirrus, Spectralis,
Topcon, Nidek AMD, RVO, DME 114 DSC, ICC 2D

Schlegl et al. (2018) [46] IRF, SRF Cirrus, Spectralis AMD/RVO/DME 212/110/32 DSC 2D

OPTIMA Cyst Segmentation
Challenge (2015) [49] IRF Cirrus, Spectralis,

Topcon, Nidek AMD, RVO, DME 15 DSC

RETOUCH (2017) IRF, SRF,
PED

Cirrus, Spectralis,
Topcon AMD, RVO 42 DSC, AVD

Abbreviations: Absolute volume difference (AVD), Dice Score (DSC), True positive rate (TPR, sensitivity), True negative rate (TNR, specificity),
False positive rate (FPR), Intraclass correlation coefficient (ICC), Central serous retinopathy (CSR), Diabetic macular edema (DME).

significance. None of the methods were able to segment and
discriminate between all three fluid types: IRF, SRF, and PED.

In summary, numerous methods have been published in
the past but the methods were evaluated on different types
of retinal images and using a different reference standard
to report the accuracy. This makes an independent and fair
comparison of their performance difficult. The only publicly
available dataset, which some methods used for evaluation,
was a data set from Duke containing 110 B-scans of 10 DME
patients acquired with Spectralis OCT and annotated by two
experts [27].

III. CHALLENGE SETUP

RETOUCH challenge aimed at creating a representative
benchmark which can be used for evaluating algorithms for
detecting and segmenting all of the three fluid types across
retinal diseases and OCT vendors. This addressed significantly
the current lack of large representative publicly available
datasets and enabled method performance comparison. It
goes substantially beyond the only prior fluid segmentation
benchmark and the only OCT-based one, the OPTIMA Cyst
Segmentation Challenge (OCSC) [49]. Other opthalmic im-
age analysis benchmarks were addressing diabetic retinopathy
(DR) and were based on color fundus images, namely the
Retinopathy Online Challenge (ROC) that benchmarked algo-
rithms for automatic detection of microaneurysms [50] and
Diabetic Retinopathy Detection Kaggle challenge [51] aimed
at automatically diagnosing DR disease stages.

RETOUCH extends substantially the OCSC in multiple
ways (Table I). First, as it became evident that different
fluid types have different clinical roles, all three fluid types
were included in the challenge. Second, as the deep learning
methods are the state of the art, a large training set was made
available to enable training of such data-intensive models.

Third, annotations and scans came from different clinical cen-
ters: Medical University of Vienna (MUV) in Austria, Erasmus
University Medical Center (ERASMUS) and Radboud Univer-
sity Medical Center (RUNMC) in The Netherlands. Fourth, a
total of 112 OCT volumetric scans are made available, the
largest to date by a large margin, and were split into training
and test set with ≈ 60% − 40% ratio. Fifth, the challenge
evaluates the performance of the algorithms on two different
tasks, both of high clinical significance: (1) fluid detection,
and (2) fluid segmentation.

The challenge was launched in April 2017 by releas-
ing the training data set on Grand Challenges in Biomed-
ical Image Analysis hosting platform under https://retouch.
grand-challenge.org. The challenge was announced on MIC-
CAI 2017 and grand-challenge.org websites. The
groups with a publishing track record in the field were
invited personally over email. In addition, the challenge was
advertised on mailing lists with wide international visibility
and during the ARVO 2017 conference, the largest venue for
vision research. This resulted in 64 teams signing the form and
downloading the data over the course of the challenge. Out of
those, nine teams submitted papers describing their work by
the end of July 2017 deadline. One submission was rejected
due to insufficient description of the method and eight were
finally accepted to participate in the challenge. Overview of
the methods used by the eight participating groups is shown
in Table II.

The test set was released in Aug. 2017 and the participants
had to submit the results by the end of the month. In case
of multiple submissions, the last one was considered for the
challenge. The individual results were not revealed during that
month to avoid tuning on the test set. The two organizing
groups (MUV and RUNMC), although having already pub-
lished segmentation algorithms [42], [46] did not participate
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TABLE II
CHALLENGE PARTICIPATING TEAMS IN ALPHABETICAL ORDER AND THE

SUMMARY OF THEIR METHODS.

Team Network Data
aug.

Layer
seg.

Post-
process 2D/3D

Helios U-net - - morphologic 2D
MABIC U-net x - U-net 2D
NJUST Faster R-CNN - x 3D smooth 2.5D
RetinAI U-net x x - 2D

RMIT U-net +
adversarial x - median filt. 3D

SFU U-net x x rand. forest 2D
UCF ED-ResNet x - graph-cut 2.5D
UMN CNN - x morphologic 2D

’x’ denotes the use of data augmentation or retinal layer segmentation

due to direct conflicts of interest. The results of the evaluation
on the test set were presented at a satellite workshop of
MICCAI in Sep. 2017 in Quebec City, Canada.

IV. EVALUATION FRAMEWORK

A. OCT Imaging Dataset

We collected and anonymized a total of 112 macula-
centered OCT volumes of 112 patients from MUV and ERAS-
MUS. Half of the patients had macular edema secondary
to AMD and half of them had edema secondary to RVO.
OCT volumes were acquired with spectral-domain SD-OCT
devices from three different vendors: Cirrus HD-OCT (Zeiss
Meditec), Spectralis (Heidelberg Engineering), and T-1000/T-
2000 (Topcon). The distribution of OCT volumes across the
three vendors were uniform (≈38 each). The device vendor
was made known but the underlying retinal disease was not
revealed to the participants.

Each Cirrus OCT consisted of 128 B-scans with a size of
512 × 1024 pixels. OCT acquired with the Spectralis device
consisted of 49 B-scans with 512× 496 pixels. OCT acquired
with Topcon devices consisted of 128 B-scans with a size of
512×885 (T-2000) or 512×650 (T-1000) pixels. All the OCT
volumes were covering a macular area of 6×6 mm2 with axial
resolutions of: 2 µm (Cirrus), 3.9 µm (Spectralis), and 2.6/3.5
µm (Topcon T-2000/T-1000).

The training set consisted of a set of 70 OCT volumes, with
24, 24, and 22 volumes acquired with Cirrus, Spectralis, and
Topcon, respectively. The test set consisted of a set of 42 OCT
volumes, with 14 volumes corresponding to each of the three
device vendors. The properties of the training and test sets are
summarized in Fig. 3. The distributions between the two sets
matched well.

B. Reference Standard

The reference standard was obtained from manual voxel-
level annotations of the IRF, SRF and PED fluid lesions in
each of the B-scans of each individual OCT volume (a total
of 11,334 B-scans). Fluid of a particular type was considered
to be absent if none of the voxels of the OCT volume were
annotated as such, and present otherwise. Manual annotation
tasks were distributed to human graders from two clinical
centers: (1) MUV, where 4 graders were supervised by one

IRF SRF PED Cirrus Spectralis Topcon AMD RVO
0

20

40

60

80

100

%

Training Set

Test Set

Fig. 3. Overview of the training and test set properties. Percentage of scans
containing a particular fluid type, OCT vendor and retinal disease.

ophthalmology resident, all trained by two retinal specialists.
(2) RUNMC, where 2 graders were supervised by one retinal
specialist. All annotations were performed on a B-scan plane;
however, orthogonal planes were also viewed and considered
in case of doubt. The supervisors reviewed all annotations
and corrected any errors. The annotations guideliness were
agreed upon in advance between the two centers before the
annotations started and they stated that boundaries had to be
visible for fluid regions to be annotated and that the annotated
regions can not contain holes. For the annotation repeatability
of each center, we refer to the evaluations reported in [42],
[49], [52].

To keep the annotation effort feasible and maximize the total
amount of annotated OCT volumes, training set was annotated
only once, with OCT volumes from Cirrus and Spectralis
devices annotated by MUV and Topcon volumes annotated
by RUNMC. All the test set OCT volumes were annotated
twice, by graders from both MUV and RUNMC to account
for inter-center variability in the evaluation.

Test set annotation aggregation: A single reference stan-
dard is created for the test set using consensus, i.e., a strict
combination of the annotations from the two centers. A fluid
was determined to be present or absent in a scan only when
both centers agreed. Similarly, only voxels for which the
two centers’ annotations agreed in the label were considered
valid for segmentation evaluation. Voxels with inter-center
disagreement were masked for exclusion. Such voxel-level
annotation aggregation is illustrated in Fig. 4.

C. Evaluation and Ranking

Evaluation consisted of forming two main leaderboards
corresponding to the two tasks: detection and segmentation.
For each leaderboard, a dense ranking was used where teams
with equal scores receive the same ranking number, and the
next team receives the immediately following number without
creating gaps in the ranking. The average rank across the two
leaderboards determined the final ranking of the RETOUCH
challenge. In case of a tie, better segmentation score had the
priority.

1) Detection task: The teams submitted for each case prob-
ability of presence of each fluid type. These were compared
to the manual grading of fluid presence. The cases with
inter-center disagreement in the presence of a particular fluid
type were excluded from evaluation of automated detection
performance of that fluid type. For each of the three fluid types,
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Fig. 4. Illustration of a reference standard on a specially chosen case with extreme disagreement. From left to right: OCT B-scan, annotation of center #1,
annotation of center #2, and the consensus reference standard with the exclusion mask in cyan. Fluid: IRF (red), SRF (green), and PED (blue).

receiver operating characteristics (ROC) curve was created
across the test set images with inter-center agreement, and
an area under the curve (AUC) was calculated. Each team
received a rank for each of the fluid types based on its AUC
value. The detection score was determined by adding the three
ranks. The detection leaderboard was created by ranking the
teams by their detection scores.

2) Segmentation task: The teams submitted for each case
a volume containing the segmentation results with each fluid
type represented with its voxel label. The results were com-
pared to the reference standard, where voxels masked for
exclusion due to inter-center disagreement were ignored. For
each OCT volume and fluid type the similarity of two samples,
segmentation (X) and reference (Y), was measured using:

• Dice score (DSC), which measures voxel overlap of the
two samples:

DSC =
2|X ∩ Y |
|X|+ |Y |

=
2TP

2TP + FP + FN
, (1)

where | · | denotes the number of voxels in the sample. TP
marks the amount of true positives, FP the false positives,
and FN the false negatives.

• Absolute volume difference (AVD) in [mm3] between
the two samples, which represents a clinically relevant
parameter:

AVD = abs(|X| − |Y |). (2)

We chose to rank the participating teams in a number of
categories and then sum the individual ranks, as done similarly
in BRATS [53] and MRBrainS [54] challenges. Due to the
large image quality variability between OCT device vendors,
segmentation results were additionally summarized per each
vendor separately. Thus, teams were ranked for each combina-
tion of: fluid type − OCT vendor − evaluation measure, based
on the mean evaluation measure over the corresponding subset
of test images. The segmentation score was then determined
by adding the 18 individual ranks (3 fluids × 3 vendors × 2
measures). Finally, the segmentation leaderboard was created
by ranking the teams by their segmentation scores.

To test for statistically significant differences in inter-center
agreement and automated method performance across fluid
types, OCT vendors and retinal diseases, a nonparametric
Wilcoxon-Mann-Whitney test was applied. To account for
triple comparisons, Bonferroni correction was applied which
adjusted the significance level from 5% to 2%. Similarly,
we tested for significant difference in performance between
participant methods by comparing the distributions of their

TABLE III
DETECTION TASK: INTER-CENTER AGREEMENT RATE FOR A FLUID TYPE,

OCT VENDOR, AND RETINAL DISEASE.

IRF SRF PED All

Cirrus 1.00 1.00 0.86 0.95
Spectralis 1.00 0.86 0.93 0.93
Topcon 0.86 1.00 1.00 0.95

AMD 0.90 0.90 0.95 0.92
RVO 1.00 1.00 0.90 0.97

All 0.95 0.95 0.93

obtained DSC values.
To evaluate the sensitivity to the quantity of fluid volume

present in the scan, we analyze the performance over equal
groups of fluid volume divided into fifths (quintiles), each
corresponding to 20% of the volume range. The following
were the four quintile values denoting the 20th, 40th, 60th, 80th-
percentile, respectively. IRF: 0.0487, 0.1612, 0.2587, 0.5945
mm3, SRF: 0.0040, 0.0888, 0.2121, 0.7425 mm3, and PED:
0.1879, 0.3890, 0.7501, 1.5381 mm3.

V. RESULTS

A. Fluid Detection Task

1) Inter-center agreement: The agreement per fluid was
high, with a rate of: 0.95 (40/42), 0.95 (40/42), and 0.93
(39/42) for IRF, SRF, and PED, respectively. Inter-center
detection agreement for each fluid type across OCT vendors
and retinal diseases is shown in Table III. Agreement in
detecting IRF and SRF in scans of patients with RVO was
noticeably better than in patients with AMD. There was no
noticeable difference in agreement across OCT vendors.

The performance of a center’s gradings by using the other
center as the ground truth is analyzed in Fig. 5. The two
centers’ operating points were favoring either maximizing
sensitivity (center 1 for SRF, and center 2 for IRF and PED) or
maximizing specificity (center 1 for IRF and PED, and center
2 for SRF).

2) Automated method performance: Average performance
of teams measured using AUC for each fluid type across
device and disease subgroups is summarized in Table IV. The
few case-fluid combinations with disagreement were excluded
from evaluation of team performances. IRF was found to
be the most difficult to detect and PED the easiest. Topcon
scans were found to be the most challenging. However no
statistically significant differences (paired test) were observed
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Fig. 5. Detection task: inter-center agreement. Operating points for each fluid
type when taking the other center’s gradings as the ground truth.

TABLE IV
DETECTION TASK: MEAN (STANDARD DEVIATION) AUC ACROSS TEAMS

FOR A FLUID TYPE, OCT VENDOR, AND RETINAL DISEASE.

IRF SRF PED All

Cirrus 0.94 (0.18) 0.89 (0.10) 0.99 (0.03) 0.94 (0.08)
Spectralis 0.89 (0.12) 0.92 (0.11) 0.97 (0.04) 0.93 (0.05)
Topcon 0.84 (0.19) 0.95 (0.08) 0.93 (0.12) 0.90 (0.08)

AMD 0.88 (0.11) 0.91 (0.10) N/A 0.89 (0.08)
RVO N/A 0.93 (0.08) N/A 0.93 (0.08)

All 0.88 (0.12) 0.92 (0.08) 0.96 (0.06)
’N/A’ denotes not applicable when the fluid is always present or absent.

in team performance between devices and diseases, partly due
to small sample size (8 teams). Examples of selected difficult
cases are displayed in Fig. 6.

Mean team detection accuracy across cases with different
volume quintiles are shown in Fig. 7. For this evaluation, oper-
ating points were selected corresponding to Youden index, i.e.,
maximal sensitivity+specificity. The methods clearly struggled
in detecting smaller fluid quantities. Only the detection of PED
performed with a high mean accuracy (> 0.90) across all
different volumes.

Taking into account individual team AUC performance for
each fluid, the detection leaderboard is shown in Table V. For
further comparison, a result of an ensemble is created, where
a majority vote was obtained by summing the scores using the
supplied detection probabilities. The majority vote produced
a perfect AUC of 1.0 for all three fluid types. Thus, we can
conclude that in the detection task automated methods were
able to achieve the performance comparable to human graders.

B. Fluid Segmentation Task

1) Inter-center agreement: The annotation agreement had
an overall DSC mean (standard deviation) of 0.73 (0.17).
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Fig. 7. Detection task: Box-plots of the mean team detection accuracy across
cases with different fluid volume quintiles.

TABLE V
DETECTION TASK LEADERBOARD WITH AUC VALUES FOR EACH FLUID

TYPE.

Rank Sum Team IRF SRF PED

3 SFU 1.00 1.00 1.00
6 UCF 0.94 0.92 1.00
8 Helios 0.93 1.00 0.97
10 MABIC 0.86 1.00 0.97
10 RMIT 0.71 0.92 1.00
11 RetinAI 0.99 0.78 0.82
11 UMN 0.91 0.92 0.95
13 NJUST 0.70 0.83 0.98

Majority Vote 1.00 1.00 1.00

Correlation in annotated volume sizes in log scale was: 0.98,
0.98, and 0.90, for IRF, SRF, and PED, respectively (Fig. 8).
Overlap for each fluid type across OCT vendors and retinal
diseases is summarized in Table VI. Overlap in segmenting
PED was significantly higher (p = 0.01) than in segmenting
IRF but no statistically significant difference in agreement
was found between different devices and diseases. Limits of
agreement and bias in annotated fluid volumes are presented in
Fig. 9. It can be observed that SRF annotations were the most
consistent and that for SRF and PED annotations the bias was
either very small in size or not statistically significant. The
main discrepancies were in IRF annotations where one center
was annotating more conservatively.

2) Automated method performance: Mean team perfor-
mance across device and disease subgroups is summarized
in Table VII. No statistically significant differences could be
observed in mean team DSC values across the subgroup cases.
However, the eight teams did perform significantly better
on RVO cases than on AMD ones (p = 0.01). They also
performed substantially although not significantly better on
Cirrus cases compared to Spectralis cases (p = 0.07), and
on segmenting PED compared to SRF (p = 0.11). A series
of qualitative examples of successful and unsuccessful results
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Fig. 6. Detection task: Examples of difficult cases (from left to right): Topcon scan where IRF was wrongly detected by 4/8 teams. Cirrus scan where SRF
was missed by 5/8 teams. Topcon scan where PED was wrongly detected by 3/8 teams. Regions which were creating difficulties are denoted in white.
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Fig. 8. Segmentation task: Annotated fluid volumes across the two centers.

TABLE VI
SEGMENTATION TASK: MEAN (STANDARD DEVIATION) INTER-OBSERVER

DSC FOR A FLUID TYPE, OCT VENDOR, AND RETINAL DISEASE.

IRF SRF PED All

Cirrus 0.74 (0.07) 0.74 (0.16) 0.78 (0.11) 0.75 (0.10)
Spectralis 0.74 (0.09) 0.66 (0.29) 0.80 (0.15) 0.73 (0.18)
Topcon 0.63 (0.15) 0.79 (0.14) 0.70 (0.31) 0.71 (0.21)

AMD 0.66 (0.13) 0.71 (0.26) 0.76 (0.21) 0.72 (0.21)
RVO 0.74 (0.09) 0.75 (0.12) N/A 0.75 (0.10)

All 0.71 (0.11) 0.73 (0.20) 0.76 (0.21)
’N/A’ denotes not applicable due to the absence of the fluid type.

across all three OCT vendors are shown in Fig. 10. We can
observe that the loss of OCT signal due to shading of vessels
and fluid pockets, as well as large pathological deformation of
the retina, were the main sources of difficulties for automated
methods.

Mean team DSC values across cases with different volume
quintiles are shown in Fig. 11. Similar to detection perfor-
mance, the methods had consistently worse performance in
segmenting smaller fluid quantities, but DSC metric may favor
the detection of larger fluid volumes [55].

The obtained segmentation leaderboard is shown in Ta-
ble VIII, and the corresponding box-plots are shown in Fig. 12.
Comparing the teams across all the 18 individual ranks,
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Fig. 9. Bland-Altman plots showing the bias (blue line), the standard deviation
(SD) and the limits of agreement (red lines) for the measured fluid volumes
between the two centers.
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TABLE VII
SEGMENTATION TASK: MEAN (STANDARD DEVIATION) MEAN TEAM DSC

FOR A FLUID TYPE, OCT VENDOR, AND RETINAL DISEASE.

IRF SRF PED All

Cirrus 0.73 (0.13) 0.63 (0.39) 0.74 (0.18) 0.70 (0.24)
Spectralis 0.69 (0.11) 0.57 (0.31) 0.68 (0.30) 0.65 (0.23)
Topcon 0.61 (0.26) 0.75 (0.16) 0.66 (0.22) 0.67 (0.22)

AMD 0.61 (0.13) 0.60 (0.36) 0.69 (0.23) 0.64 (0.25)
RVO 0.73 (0.18) 0.72 (0.18) N/A 0.72 (0.18)

All 0.68 (0.17) 0.66 (0.29) 0.69 (0.23)
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Fig. 11. Segmentation task: Box-plots of the mean team DSC across cases
with different fluid volume quintiles.

the first team was substantially better than the second team
(p = 0.07) and significantly better than the rest (p < 0.01).
Second and third teams were significantly better than the
sixth and onwards (p = 0.02). Unlike detection performance,
the automated segmentations were not within the inter-center
agreement. Finally, we also include ensemble results obtained
by fusing the team segmentation labels using majority voting.
Such label fusion already outperformed all of the methods,
showing that there is a potential for further performance
improvement.

VI. DISCUSSION

A. Main Findings

With RETOUCH we introduced a dataset that serves as
benchmark and evaluation framework with standardized train-
ing and test sets of OCT images. We have performed an
extensive analysis of the results submitted by the eight teams
that participated in the challenge. With the analysis we aimed
at answering the following set of questions:

a) How good is the automated method performance?:
In the detection task one of the methods already achieved
perfect score and the same is achieved with majority voting
method fusion. Thus we can conclude that the automated
detection at expert level is possible, i.e., it operates within

inter-center grading variability. However, this is not the case
with segmentation task where the best methods achieved DSC
= 0.7 − 0.8 on the consensus reference and the majority
voting label fusion outperformed all of the methods, showing
that there is ample space for improvement. The winning
method (team SFU) was proved the best in both detection and
segmentation tasks. Interestingly, some methods (teams UMN
and UCF) did very well on one task but poorly on the other.

b) How did the automated methods differ?: All the
methods were deep learning based (Table II), with most teams
implementing a variant of a fully convolutional network [39],
[40], [56]. Thus the differences were in the extent of pre/post-
processing, usage of auxiliary retinal layer segmentation and
training details. In particular, the size and complexity of
the networks varied hence different regularization approaches
were used to prevent overfitting. Furthermore, teams employed
different strategies in the training to compensate for class
imbalance. All the teams applied their networks in 2D, i.e.,
per B-scan. To benefit from 3D context, one team (RMIT)
trained their models to utilize the two neighboring B-scans,
and two teams (NJUST, UCF) utilized the 3D context in the
post-processing stage. Most teams standardized the image size
and intensities across OCT devices but the two top teams were
the only ones that trained a neural network for each of the
three devices separately. Finally, the top team was the only
one that combined all the main elements: layer segmentation,
data augmentation, and extensive post-processing.

c) How good is the inter-center annotation agreement?:
The fluid detection agreement was high (≈ 0.95) but fluid
segmentation agreement had a mean DSC = 0.73. This is
similar to the human inter-rater mean DSC = 0.75 reported
in [41], and reflects the difficulty of the manual fluid annota-
tion task. In comparison to other image analysis challenges,
segmentation agreement falls in-between brain tumor segmen-
tation (BRATS) [53] where DSC = 0.74−0.85 were reported,
and ischemic stroke lesion segmentation (ISLES) where DSC
= 0.7 [57], both also very difficult tasks for even manual
annotation.

d) How do the motion artifacts and noise impact perfor-
mance?: All the teams, with the exception of RMIT, perform
the OCT segmentation in 2D, B-scan per B-scan. In such an
approach, the impact of motion artifacts is avoided at the cost
of losing the benefit of 3D context. To tackle the speckle noise,
the preprocessing approaches utilized traditional denosing
techniques, ranging from Gaussian (UCF) and median filtering
(RMIT) to bilateral filtering [58] (NJUST) and total variation-
based [59] denoising (Helios). However, we observed that
CNNs even without any denoising showed good robustness
to noise (Fig. 10) and the degradation of image quality caused
by retinal abnormalities attenuating OCT signal had a stronger
detrimental impact than the speckle.

e) Is there a difference in performance between fluid
types?: There was no observed difference in inter-center
detection agreement but agreement in segmentation of PED
was better than for SRF and IRF. That is somewhat expected
as PED is easier to visually spot as it consists of layer detach-
ment. It is also encouraging that graders from the two centers
had the same notion of what constitutes a PED, given that it
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Cirrus

Spectralis

Topcon

Fig. 10. Segmentation task. Qualitative results (rows) grouped by OCT vendors: Cirrus, Spectralis, and Topcon. Columns: (Left) OCT B-scan, (Middle)
reference standard with the exclusion mask (cyan), (Right) the distribution of team segmentations with darker hue denoting better agreement of the 8 teams.
The bottom example of each vendor group was found to be especially challenging to segment. Fluid: IRF (red), SRF (green) and PED (blue).
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Fig. 12. Segmentation task: Box-plots illustrating the DSC (top row) and AVD (bottom row) performance of the teams across the three fluid types, sorted by
the mean DSC and AVD, respectively.

TABLE VIII
SEGMENTATION TASK LEADERBOARD. MEAN AND STANDARD DEVIATION OF VALUES ACROSS CASES FOR DICE SCORE (DSC) AND ABSOLUTE VOLUME

DIFFERENCE (AVD) IN [MM3].

Rank Sum Team IRF SRF PED
DSC AVD DSC AVD DSC AVD

39 SFU 0.82 (0.19) 0.030 (0.036) 0.75 (0.30) 0.041 (0.089) 0.74 (0.24) 0.140 (0.154)
59 UMN 0.70 (0.20) 0.088 (0.131) 0.71 (0.33) 0.032 (0.058) 0.77 (0.23) 0.119 (0.207)
64 MABIC 0.78 (0.22) 0.027 (0.032) 0.66 (0.32) 0.064 (0.123) 0.70 (0.29) 0.167 (0.169)
73 RMIT 0.73 (0.20) 0.078 (0.079) 0.70 (0.31) 0.046 (0.094) 0.69 (0.25) 0.245 (0.290)
74 RetinAI 0.74 (0.19) 0.039 (0.054) 0.67 (0.33) 0.079 (0.147) 0.71 (0.29) 0.189 (0.416)
88 Helios 0.63 (0.19) 0.048 (0.064) 0.68 (0.30) 0.059 (0.103) 0.66 (0.26) 0.297 (0.503)
120 NJUST 0.57 (0.21) 0.107 (0.124) 0.53 (0.34) 0.103 (0.169) 0.63 (0.27) 0.253 (0.380)
130 UCF 0.49 (0.20) 0.276 (0.319) 0.54 (0.33) 0.112 (0.140) 0.63 (0.24) 0.280 (0.285)

Majority Vote 0.83 (0.17) 0.027 (0.036) 0.79 (0.31) 0.027 (0.048) 0.80 (0.24) 0.095 (0.110)

appears in different forms and subtypes. Method performance
in detecting PED was also observed to be higher than SRF,
which was furthermore higher than IRF. In segmentation task,
similar method performance was observed among all three
fluid types.

f) Is there a difference in performance between OCT ven-
dors?: One could expect that automated method performance
on Spectralis scans would be the highest due to their superior
SNR (Figs 1, 10). However they contained smaller number of
B-scans: 49 compared to 128 in Cirrus and Topcon, effectively
making the Spectralis training set more than 2 times smaller. In
addition, their larger spacing between the B-scans may hinder
the ability to exploit the 3D context. Those factors may partly
explain why the mean automated segmentation performance on
Spectralis scans was the lowest. In general, the variability of
fluid lesion manifestation, which directly affects the difficulty
of a task, is assumed to be larger and more dominating factor
than the variability of image quality across device vendors.

g) Is there a difference in performance between retinal
diseases?: One would expect that scans of retinas suffering
from RVO would be easier to quantify as AMD is a more mor-
phologically damaging disease. Indeed, our analysis found that

inter-center agreements and automated method performances
were consistently better for macular edemas secondary to
RVO, compared to AMD, in both detection and segmentation.

B. Strengths and Limitations

The challenge dataset goes substantially beyond what has
been available before in both its size (112 OCTs with 11,334
B-scans) and variability. For the first time, all three retinal
fluid types have been addressed simultaneously and they were
present with a wide range of volumes, from tiny pockets to
large regions. The scans were assembled from multiple clinical
centers. Even though acquisition patterns vary in practice,
on our dataset we kept the scanning patterns from the same
OCT vendor homogeneous. All Spectralis volumes consisted
of 49 B-scans, while Cirrus and Topcon had 128. The B-scan
resolutions were similarly kept homogeneous. This limited the
preprocessing and normalization needed while still capturing
the inter-vendor scan variability.

Clinical information was purposely not provided to the
participants. RVO is a disease of retinal vasculature, which lies
within the retina and it almost always produces IRF but rarely
PED. On the other hand, wet AMD originates from the choroid
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below the retina and it almost always produces some form of
PED. In practice, knowing the underlying disease could be
used as strong prior for fluid presence.

Despite its large overall size, the sizes of individual
fluid−device−disease categories were found to be of low
statistical power to capture differences in performances. There-
fore, it would be desirable to increase in the future the
number of test cases. This would also better capture the large
variability of fluid lesion phenotypes occurring in practice
and assess better the generalization capabilities of automated
methods. However, increasing the training set substantially
may not be necessary as fusion label techniques, e.g., majority
voting, were already able to boost the performance.

The annotations were performed at two different medical
centers from two countries. This allows to evaluate grading
variability that includes the inter-center variability. The two an-
notations were used to generate the test set reference standard
by a strict agreement, i.e., voxel-level consensus, because adju-
dication or including a third medical center was not considered
feasible given the physical distance betweem the centers and
the amount of annotations performed (4270 B-scans in the test-
set). In such a scenario, the automated quantification would
ideally achieve a perfect score as there is by definition no inter-
center variability in the consensus. The training set was also
labeled by the two medical centers but each case was labeled
by a single center. Thus inconsistencies in training labels may
be present. However, this was compensated by having larger
total amount of cases available for training, which should allow
the methods to overcome potential inter-center inconsistencies.

The performed analysis was focused on the DSC measure
which is known to be overly sensitive to cases with small
fluid volume. To compensate for this effect, we introduced an
additional measure AVD into the leaderboard rankings, which
directly reflects volume size discrepancies.

Finally, the eight teams that competed represent only a small
subset of the teams working in this field as many recognized
research groups (section II) were not able or decided not to
take part.

C. Path Forward

While fluid detection has clear clinical relevance for screen-
ing where high sensitivity is paramount, the level of fluid
segmentation performance needed for clinical use is currently
not clear and it likely depends on the application. In fact,
the results of automated fluid segmentations have already
been used for building successful predictive models of treat-
ment responders [60], retreatment need [16], [61] and longer
term treatment requirements [62], as well as analyzing and
predicting visual acuity outcomes under anti-VEGF treat-
ment [63]. Thus, a potential path forward for future retinal
OCT challenges would be to focus on directly predicting future
clinical outcomes, analogous to TADPOLE challenge [64] for
predicting Alzheimer’s disease progression from brain scans.
Such use in predictive modeling is especially beneficial as it
would provides objective prognosis in contrast to currently
subjective and variable ones provided by clinicians.

VII. CONCLUSION

RETOUCH is a benchmark and evaluation framework for
automated detection and segmentation of retinal fluid from
OCT. We thoroughly analyzed the results of the eight teams
that participated in the corresponding MICCAI 2017 chal-
lenge. The winning method performed the best across both
detection and segmentation tasks and hence was a clear winner
of the challenge. However it did not win in all the categories
considered. All of the analyzed methods were deep learning
based. In particular most relied on U-net [40], a popular
fully convolutional network architecture for medical image
segmentation. The recent development of newer semantic seg-
mentation algorithms, which further exploit the image context
without loosing the spatial resolution [65]–[67], might push
the future method performance even further.

The performance on the automated fluid detection was
high, which makes it a very promising technology for real
world deployment in the clinic. This would already be very
helpful to clinicians as it would provide them with additional,
objective “pair of eyes” in detecting the presence of retinal
fluid. Automated fluid segmentation task was shown to still be
a difficult challenge even for human experts as observed by a
large inter-center grading variability. Large variability of fluid
lesion phenotypes seemed to have dominated the variability in
devices or underlying retinal diseases. However, fusing several
methods using a majority vote produced segmentations that
ranked above all individual methods, indicating opportunities
for further improvements in methodology and consequently in
performance.

APPENDIX A
PARTICIPATING METHODS

Below are short descriptions of each of the methods. More
detailed information regarding the methods and the underlying
techniques are available within the MICCAI challenge work-
shop proceedings [68].

A. Helios [69]

We propose a fully automated Generalized Motion Pattern
(GMP) based segmentation method using a cascade of fully
convolutional networks for detection and segmentation of
retinal fluids. The GMP which is derived by inducing motion
(rotation and translation) to an image to suppress the back-
ground. The segmentation and detection task are accomplished
by providing GMP images as an input to a Fully Convolutional
Network (FCN) U-Net based architecture. The detection is
achieved by introducing fully connected layers at the end of
first cascaded stage (the bottleneck).

We use binary cross entropy and dice coefficient based loss
function for the detection and segmentation task respectively.
Since abnormalities are 3D structures prevailing in multiple
slices, considering k-neighboring slices for predicting and
segmenting the retinal fluid aids in accurate detection and
helps in eradicating false positives. The proposed method is
parallelizable and handles inter-scanner variability efficiently.
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B. MABIC [70]

We propose a two-step neural network for detection and
segmentation of the retinal OCT fluid. The first network per-
forms detection and segmentation of fluids, while the second
network performs post-processing on the output images of the
former network to enhance robustness of the former network.
More specifically, both networks basically adopt the U-net
architecture to segment the fluids.

In the first network, U-net is combined with one fully
connected layer for fluid detection. The second network again
trains the segmented fluids taking both OCT image and corre-
sponding segmented image generated from former network as
input data with two channels. The second network is separately
trained for each type of fluid (i.e., IRF, SRF, and PED). To
avoid the overfitting, dropout layer and maxout activation
(instead of ReLU) are added. Binary cross entropy is used
as a loss function for both detection and segmentation, and it
is minimized using the AdaDelta optimizer.

As a pre-processing step, all OCT images acquired from 3
different devices are resized to 512 × 512 pixels (B-scans),
and each image is normalized to the range [0,1]. Images are
classified into one of eight classes (all combinations of IRF,
SRF, and PED presence). Data augmentation is performed us-
ing translation along the horizontal and vertical axes (≤ 15%),
rotation (≤ 5◦), scaling (≤ 15%), and reflection along the
horizontal axis. The compensation for class imbalance is not
considered.

C. NJUST [71]

A novel segmentation method by combining Faster R-
CNN [56], region growing and effective layer segmentation
is proposed. Segmented fluid served directly as the detection
result.

(1) Faster R-CNN for IRF segmentation: Faster R-CNN
is a unified, deep learning-based real-time object detection
method in computer vision. By sharing convolutional features
with the down-stream detection network, the region proposal
step is nearly cost-free. The learned region proposal network
improves region proposal quality and thus the overall object
detection accuracy. IRF lesion region always appears between
ILM and IS/OS lines.During the training phase, we construct
a smallest rectangular box containing IRF region. Then, we
input training data, labels, and rectangular boxes to the Faster
R-CNN. For each testing B-scan, the network would search
the possible IRF region in the ROI obtained by effective
layer segmentation and label the possible lesion area with
rectangular box. Each rectangular has a score from Faster
R-CNN. Finally, the IRF lesion region can be detected and
segmented when the corresponding score is higher than the
pre-setting threshold. Data augmentation: we used 11 different
scales from [0.5,1.5] with a step of 0.1.

(2) 3D region growing for SRF segmentation: Between
IS/OS and RPE, 3D region growing is applied to segment the
SRF area. In the first step of 3D region growing, Faster R-CNN
is utilized to generate the initial seed candidate set which is
then clustered into two classes by k-means. The cluster centers
are regarded as the seeds. The criterion for 3D region growing

is that the intensity of the candidate voxel must be within one
standard deviation from the mean of 26 neighboring points in
3D around the seeds.

(3) RPE layer segmentation for PED segmentation: A
novel retinal layer segmentation method based on reflectivity
distribution characteristics of retinal images was proposed for
the OCT images with serious retinal diseases. PED will result
in the arching of RPE, so we can segment the PED area
directly by computing the thickness of RPE and BM after
layer segmentation.

D. RetinAI [72]

The simultaneous classification and segmentation of the
three fluid types is based on a modified version of the deep
learning approach proposed by Apostolopoulos et al. [73]
This CNN was designed as an encoder-decoder configuration,
where each input image is processed by a series of convo-
lutional blocks and contracting operations (encoder layers),
followed by a series of convolutional blocks and expanding
operations (decoder layers). In the new approach, the same
architecture was reused and hyperparameters were set accord-
ing to Apostolopoulos et al. [73]. Given an OCT image and an
indexed five layer segmentation image as input, this CNN out-
puts an indexed map of the same dimensions, with a range of
[0, 3], representing background and the three fluid types. The
same input was fed to a RetiNet which detects the presence of
the three fluid types as three binary outputs. The latter consists
of a CNN, trained in an extreme learning fashion, which has
shown good results for classification of both B-scans and C-
scans [74]. Finally, the output of the classifier is used as a gate
to remove false positive segmentations.

The classification and segmentation outputs were learned
jointly, relying on stochastic gradient descent with an initial
learning rate of 10−3, which was halved every 20 iterations,
and continued until the loss function converged. While fluid
segmentation and classification is performed per B-scan, the
diagnosis of a patient has to be performed on the full C-
scans volume. Again, we use the RetiNet network, specifically
the RetiNet-C configuration, which processes every B-scan
in a single pass, using the RetiNet-B configuration as a
feature extractor. Because C-scans from different devices have
different resolutions (mm / pixel), they are first resampled to
a common resolution using cubic spline interpolation.

E. RMIT [75]

The proposed fluid segmentation method uses a neural
network model that consists of a modified U-net linked
to an adversarial network. The modifications to the U-net
include: batch normalisation following each convolutions/de-
convolution block, dropout regularization at each skip connec-
tion, and multi-scale feature aggregation at the final convolu-
tional layer. The adversarial network, trained to differentiate
between predicted segmentation masks and ground-truth seg-
mentations, helps encode higher order information between
image regions and eliminates the need for a post-processing
step. The output of the last feature layer of the segmentation
U-net across all slices in the volume was aggregated and a
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second shallow network was trained to predict the presence of
a particular fluid type in a given OCT volume.

The segmentation CNN was trained using the loss-function
given below

L = Lcross + λdLdice + λaLadv + λw ‖w‖2 .

The first term, Lcross, is the class-balanced cross-entropy loss
that normalizes the general cross-entropy to account for class
imbalance in each slice. The second term is a smoothed version
of dice coefficient between pathologies and normal tissue. The
third term, Ladv , guides the network towards generating a
segmentation mask that can confuse the trained adversarial
network. The overall network was trained for 100 epochs using
the Adam optimizer.

To minimize the variations between images from different
vendors each OCT volume was subjected to a set of pre-
processing steps. First, the voxel values were normalized
to range [0, 255] followed by histogram matching using a
randomly selected OCT scan as template. Next, a median filter
along the z-dimension (size 5) is applied and the volumes
are re-sampled to give approximately the same voxel spacing
across all vendors. Finally, entropy of voxels is used to
identify the region of a slice that contain the retinal layers.
During the training phase fixed size overlapping sub-volumes
([256× 128× 3]) are extracted from the interesting region
identified above and was augmented using random rotations
and horizontal flipping. During the test phase, the CNN is
applied to each pre-processed OCT sub-volume separately.
The resulting segmentations are stacked together and a median
filter was applied across B-scans to produce the the overall
segmentation. The code is available at https://github.com/
RuwanT/retouch.

The detection network takes as input the last layer features
of the segmentation network and supplies them to a convolu-
tional and a global average pooling layer followed by 3-dense
layers with soft-max activations (one for each fluid type).

F. SFU [76]

The proposed segmentation framework consisted of three
steps:

1) Preprocessing: To reduce the effect of speckle,
motion-corrected intensity B-scans in each volume were
smoothed by 3D Bounded variation (BV). Then, 3D graph-cut
based algorithm was applied to segment the internal limiting
membrane (ILM) and the Bruch’s membrane (BM).

2) Multi-class fluid pixel segmentation: A 2D fully con-
volutional neural network, which shared a similar structure
as the standard U-net, was proposed to segment each pixel
into background, IRF, SRF and PED. Because the proposed
network determined the class of each pixel solely by the inten-
sities of its neighbors, it can hardly recognize different types
of fluids with only raw intensity B-scan as input. Therefore,
relative distance map was concatenated to the intensity of each
B-scan as the second channel of input image. For a pixel
(x, y), its intensity in the relative distance map is defined as:
I(x, y) = y−Y1(x)

Y1(x)−Y2(x)
, where Y1(x) and Y2(x) represent ILM

and BM, respectively. Softmax cross entropy was applied as

loss function with only true positive and false positive pixels
used for calculation to avoid class imbalance between back-
ground and fluid pixels. To increase the number of training
samples, three processes - flip, rotation and zooming - were
applied for data augmentation with rotation degree from −25o
to 25o and maximum zooming ratio 0.5.

3) Post-processing: To prevent over-segmentation, po-
tential fluid pixels with 8-connectivity in each B-scan were
considered as a candidate region. For each region, a 16-
dimensional shape and intensity feature was extracted and used
to train a random forest classifier to rule out false positive
regions.

With the fluid segmentation result from previous steps, the
presence of fluid in each volume was determined based on the
assumption that fluid usually existed within multiple B-scans.
The probability of fluid presence in each B-scan was defined
as the highest probability of all candidate fluid regions within
the scan from random forest classifier, and the probability
of a volume was calculated as the mean of the 10 highest
probabilities overall all B-scans in this volume.

G. UCF [77]

A deep encoder-decoder ResNet (ED-ResNET) CNN was
used for pixelwise segmentation of individual OCT slices.
The CNN contains a total of 43 convolutional layers, 32 of
which are on the encoder side of the network. The network
was trained with cross entropy loss and class imbalance was
handled by applying class-specific weights to the loss at each
pixel. Specifically, the weight for each class was proportional
to the percentage of pixels not belonging to that class.

Pre-processing consisted of smoothing the 3D OCT volumes
before slice extraction, resizing, and cropping to the retina
area. Post-processing consisted of a graph cut algorithm and
some knowledge-guided morphological operations for refine-
ment. In training, a novel data augmentation technique, called
myopic warping, was proposed, in which an image of the
retina was warped to look more myopic (curvier retina). My-
opic warping was used jointly with rotation data augmentation
to greatly increase the size of the training set.

Detection probabilities were computed by dividing the total
segmented fluid volume by a constant.

H. UMN [78]

The pre-processing step in fluid segmentation involves the
segmentation of ILM and RPE layers as a region of interest
for the IRF and SRF. For this task, the graph is constructed
from each OCT B-scan by mapping each pixel in the image
to one node in a graph. Layer segmentation is carried out
by graph shortest path method. Weights in graph, computed
by the proposed methods, guarantee that pixels located in
layer boundaries have the minimum weights and consequently
are the best candidates to be selected by graph shortest path
methods.

For IRF and SRF segmentation, a supervised method based
on CNN is trained in which ROI is present in the training and
testing phases. Here, fluid (IRF and SRF) and tissue pixels
are labeled as 1 and 0, respectively. Therefore, the CNN is
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trained for binary classification with a quadratic loss function
which minimizes the quadratic sum of distance of each point to
the regression line. The procedure to select training pixels for
CNN to handle class imbalance is as follows. Consider a fluid
pixel in training set; three properties including pixel intensity,
average and standard deviation of the intensity of neighboring
pixels are considered for this pixel. In the next step, all fluid
pixels whose properties are similar to this pixel are removed
from the training set. Finally, a tissue pixel set with the
same size of fluid pixel set is selected from tissue pixels
randomly. This approach decreases the size of the training set
significantly since the majority of fluid pixels have the same
behavior with respect to the three mentioned properties. CNN
is applied to each B-scan separately. For this task, each pixel is
represented by a [10,10] window of its neighbors. Then, these
windows are input to the CNN. Therefore, each pixel is labeled
as fluid or tissue by its 100 neighbors. Architecture of CNN is
summarized as follows. First Layer: Convolutional layer with
number of feature maps=10, size of kernels=[3,3], activation
function=ReLU. Second Layer: Pooling layer with subsample
rate=2, subsample method=mean. Third layer: Fully-connected
layer with number of nodes=150, activation function=tanh.
Fourth layer: Fully-connected layer with number of nodes=2,
activation function=tanh. The post-processing step for fluid
segmentation is to ignore small fluid regions with sizes under
a threshold.

For fluid detection, in each B-scan, probabilities of the exis-
tence of IRF, SRF and PED are computed. These probabilities
are computed for each OCT volume. Then, the probability of
IRF, SRF and PED are computed by thresholding. Therefore,
a binary value is assigned for each B-scan which means that
this B-scan may or may not contain fluid.

REFERENCES

[1] L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong,
“Age-related macular degeneration,” The Lancet, vol. 379, no. 9827,
pp. 1728–1738, may 2012.

[2] P. J. Rosenfeld, D. M. Brown, J. S. Heier, D. S. Boyer, P. K. Kaiser,
C. Y. Chung, R. Y. Kim, and MARINA Study Group, “Ranibizumab for
neovascular age-related macular degeneration.” N. Engl. J. Med., vol.
355, no. 14, pp. 1419–31, Oct. 2006.

[3] A. C. Ho, B. G. Busbee, C. D. Regillo, M. R. Wieland, S. A. Van Everen,
Z. Li, R. G. Rubio, and P. Lai, “Twenty-four-month efficacy and safety
of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular
age-related macular degeneration.” Ophthalmology, vol. 121, no. 11, pp.
2181–92, nov 2014.

[4] R. Silva, A. Berta, M. Larsen, W. Macfadden, C. Feller, J. Monés, and
TREND Study Group, “Treat-and-Extend versus Monthly Regimen in
Neovascular Age-Related Macular Degeneration,” Ophthalmology, vol.
125, no. 1, pp. 57–65, jan 2018.

[5] U. Schmidt-Erfurth and S. M. Waldstein, “A paradigm shift in imaging
biomarkers in neovascular age-related macular degeneration.” Progr.
Retin. Eye. Res., vol. 50, pp. 1–24, Jan. 2016.

[6] U. Schmidt-Erfurth, S. Klimscha, S. M. Waldstein, and H. Bogunović,
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BOGUNOVIĆ et al.: RETOUCH - THE RETINAL OCT FLUID CHALLENGE 17

[58] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 1998, pp. 839–
846.

[59] A. Chambolle, “An algorithm for total variation minimization and
applications,” J. Math. Imaging Vis., vol. 20, no. 1-2, pp. 89–97, Jan.
2004.

[60] H. Bogunovic, L. Zhang, M. D. Abramoff, and M. Sonka, “Prediction
of treatment response from retinal OCT in patients with exudative age-
related macular degeneration,” in MICCAI Workshop on Ophthalmic
Medical Image Analysis (OMIA), Jan. 2014, pp. 129–136.

[61] W.-D. Vogl, S. M. Waldstein, B. S. Gerendas, U. Schmidt-Erfurth, and
G. Langs, “Predicting Macular Edema Recurrence from Spatio-Temporal
Signatures in Optical Coherence Tomography Images,” IEEE Trans.
Med. Imag., pp. 1–1, May 2017.

[62] H. Bogunovic, S. M. Waldstein, T. Schlegl, G. Langs, A. Sadeghipour,
X. Liu, B. S. Gerendas, A. Osborne, and U. Schmidt-Erfurth, “Prediction
of Anti-VEGF Treatment Requirements in Neovascular AMD Using a
Machine Learning Approach,” Invest. Ophthalmol. Vis. Sci., vol. 58,
no. 7, pp. 3240–3248, jun 2017.

[63] W.-D. Vogl, S. M. Waldstein, B. S. Gerendas, T. Schlegl, G. Langs, and
U. Schmidt-Erfurth, “Analyzing and Predicting Visual Acuity Outcomes
of Anti-VEGF Therapy by a Longitudinal Mixed Effects Model of
Imaging and Clinical Data,” Invest. Ophthalmol. Vis. Sci., vol. 58,
no. 10, p. 4173, aug 2017.

[64] R. V. Marinescu, N. P. Oxtoby, A. L. Young, E. E. Bron, A. W. Toga,
M. W. Weiner, F. Barkhof, N. C. Fox, S. Klein, D. C. Alexander,
t. E. Consortium, and f. t. A. D. N. Initiative, “TADPOLE challenge:
Prediction of longitudinal evolution in alzheimer’s disease,” ArXiv,
Aug. 2018. [Online]. Available: http://arxiv.org/abs/1805.03909

[65] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018.

[66] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn.
(CVPR), 2017.

[67] S. Jégou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn.
(CVPR), 2017.

[68] “RETOUCH - RETinal Oct flUid CHallenge, a satellite event of MIC-
CAI 2017,” https://retouch.grand-challenge.org/workshop/, 2017.

[69] S. Yadav, K. Gopinath, and J. Sivaswamy, “A generalized motion pattern
and FCN based approach for retinal fluid detection and segmentation,” in
Proc. MICCAI Retinal OCT Fluid Challenge (RETOUCH), Sep. 2017.

[70] S. H. Kang, H. S. Park, J. Jang, and K. Jeon, “Deep neural networks for
the detection and segmentation of the retinal fluid in OCT images,” in
Proc. MICCAI Retinal OCT Fluid Challenge (RETOUCH), Sep. 2017.

[71] Q. Chen, Z. Ji, T. Wang, Y. Tand, C. Yu, O. I. Paul, and L. B. Sappa,
“Automatic segmentation of fluid-associated abnormalities and pigment
epithelial detachment in retinal SD-OCT images,” in Proc. MICCAI
Retinal OCT Fluid Challenge (RETOUCH), 2017.

[72] S. Apostolopoulos, C. Ciller, R. Sznitman, and S. D. Zanet, “Simulta-
neous classification and segmentation of cysts in retinal OCT,” in Proc.
MICCAI Retinal OCT Fluid Challenge (RETOUCH), Sep. 2017.

[73] S. Apostolopoulos, S. De Zanet, C. Ciller, S. Wolf, and R. Sznitman,
“Pathological OCT retinal layer segmentation using branch residual U-
shape networks,” in Proc. Int. Conf. Med. Imag. Comput. & Comput.
Assist. Interven. (MICCAI), ser. Lect. Notes Comput. Sci., vol. 10435,
2017, pp. 294–301.

[74] S. Apostolopoulos, C. Ciller, S. I. D. Zanet, S. Wolf, and R. Sznitman,
“Retinet: Automatic AMD identification in OCT volumetric data,”
ArXiv, 2016. [Online]. Available: https://arxiv.org/abs/1610.03628

[75] R. Tennakoon, A. K. Gostar, R. Hoseinnezhad, and A. Bab-
Hadiashar, “Retinal fluid segmentation and classification in OCT
images using adversarial loss based CNN,” in Proc. MICCAI Retinal
OCT Fluid Challenge (RETOUCH), Sep. 2017. [Online]. Available:
https://github.com/RuwanT/retouch

[76] D. Lu, M. Heisler, S. Lee, G. W. Ding, V. Vanzan, E. Navajas, M. V.
Sarunic, and M. F. Beg, “Retinal fluid segmentation and detection in
optical coherence tomography images using fully convolutional neural
network,” Med. Image Anal., 2019, accepted. [Online]. Available:
https://arxiv.org/abs/1710.04778

[77] D. Morley, H. Foroosh, S. Shaikh, and U. Bagci, “Simultaneous de-
tection and quantification of retinal fluid with deep learning,” in Proc.
MICCAI Retinal OCT Fluid Challenge (RETOUCH), Sep. 2017.

[78] A. Rashno, D. D. Koozekanani, and K. K. Parhi, “Detection and
segmentation of various types of fluids with graph shortest path and deep
learning approaches,” in Proc. MICCAI Retinal OCT Fluid Challenge

(RETOUCH), Sep. 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMI.2019.2901398

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


