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Evaluating the impact of 
vitreomacular adhesion on anti-
VEGF therapy for retinal vein 
occlusion using machine learning
Sebastian M. Waldstein   , Alessio Montuoro, Dominika Podkowinski, Ana-Maria Philip, 
Bianca S. Gerendas   , Hrvoje Bogunovic & Ursula Schmidt-Erfurth

Vitreomacular adhesion (VMA) represents a prognostic biomarker in the management of exudative 
macular disease using anti-vascular endothelial growth factor (VEGF) agents. However, manual 
evaluation of VMA in 3D optical coherence tomography (OCT) is laborious and data on its impact on 
therapy of retinal vein occlusion (RVO) are limited. The aim of this study was to (1) develop a fully 
automated segmentation algorithm for the posterior vitreous boundary and (2) to study the effect of 
VMA on anti-VEGF therapy for RVO. A combined machine learning/graph cut segmentation algorithm 
for the posterior vitreous boundary was designed and evaluated. 391 patients with central/branch 
RVO under standardized ranibizumab treatment for 6/12 months were included in a systematic post-
hoc analysis. VMA (70%) was automatically differentiated from non-VMA (30%) using the developed 
method combined with unsupervised clustering. In this proof-of-principle study, eyes with VMA showed 
larger BCVA gains than non-VMA eyes (BRVO: 15 ± 12 vs. 11 ± 11 letters, p = 0.02; CRVO: 18 ± 14 
vs. 9 ± 13 letters, p < 0.01) and received a similar number of retreatments. However, this association 
diminished after adjustment for baseline BCVA, also when using more fine-grained VMA classes. Our 
study illustrates that machine learning represents a promising path to assess imaging biomarkers in 
OCT.

Retinal vein occlusion (RVO) is a frequent cause of visual disability in the working-age population1. Anti-vascular 
endothelial growth factor (anti-VEGF) therapy provides an effective treatment option for macular oedema sec-
ondary to central and branch RVO in a wide range of patients, including those with longer disease duration and 
macular ischemia2–7. Because the individual functional response to therapy and the number of required treat-
ments over time is highly variable, the establishment of prognostic factors for anti-VEGF therapy represents an 
active field of research8, 9.

In addition to the morphologic status of the neurosensory retina, the configuration of the vitreous and vitr-
eomacular interface has attracted scientific interest as a prognostic factor in anti-VEGF therapy in the recent 
years10. Prior studies observed visually asymptomatic vitreomacular adhesion (VMA) in about 40% of patients 
with macular oedema secondary to RVO11. Studies in neovascular AMD suggest excellent functional response 
to anti-VEGF therapy in eyes with VMA, if treatment is administered frequently and aggressively12–14. A positive 
impact of VMA on visual acuity outcomes in anti-VEGF therapy has also been reported in diabetic macular 
oedema and in anti-VEGF therapy for RVO11, 15, 16.

The advent of spectral-domain optical coherence tomography (SD-OCT) with its fast raster scanning capa-
bilities, in combination with rising patient numbers in ophthalmology clinics, has led to a substantial increase 
in OCT images for the clinician to assess. Thus, researchers have started to question the feasibility of a manual 
review of OCT images in clinical practice, and suggest automated computational analysis of SD-OCT data to aid 
clinical management and decision making17.
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In this paper, we use fully automated computational segmentation and classification of SD-OCT scans to evaluate 
VMA in patients receiving ranibizumab for macular oedema secondary to branch and central RVO in two multicen-
tre prospective clinical trials, and compare visual acuity outcomes between patients with and without VMA.

Patients and Methods
This study is a post-hoc analysis of a comprehensive clinical trial image library at the Vienna Reading Center 
(VRC), Vienna, Austria. For central RVO, we included SD-OCT data of patients enrolled in CRYSTAL, a phase 
IIIb, multicentre trial assessing the efficacy and safety of an individualized visual acuity (VA) dosing regimen 
of ranibizumab 0.5 mg driven by stabilization criteria6. For branch RVO, we included SD-OCT data of patients 
enrolled in BRIGHTER, a phase IIIb, multicentre study assessing the efficacy and safety of an individualized sta-
bilization criteria–driven pro re nata (PRN) dosing regimen of ranibizumab 0.5 mg alone or in combination with 
laser versus laser photocoagulation7. Patients randomized to the laser only arm of BRIGHTER were excluded 
from the current analysis because of previously demonstrated inferior VA outcomes7. Our study was conducted 
in compliance with the Declaration of Helsinki. Approval was obtained by the institutional review board or ethics 
committee at each site participating in the multicentre trial. Furthermore, approval for the present post-hoc anal-
ysis was obtained by the Ethics Committee at the Medical University of Vienna. All participants provided written 
informed consent before inclusion into the CRYSTAL and BRIGHTER trials. The multicentre trials are registered 
with clinicaltrials.gov (identifiers NCT01599650 and NCT01535261).

Inclusion and exclusion criteria.  Detailed inclusion and exclusion criteria of the CRYSTAL and 
BRIGHTER studies have been reported previously6, 7. In brief, patients with macular oedema secondary to branch 
or central RVO and a visual acuity between 20/40 and 20/400 (Snellen equivalent) were included. Key exclusion 
criteria were the use of intraocular anti-VEGF treatment ≤3 months, intraocular corticosteroid use ≤3 months, 
and macular laser photocoagulation ≤4 months before the screening visit. Because the VMA segmentation algo-
rithm developed for this work (see below) is currently only available for Heidelberg Spectralis OCT images, only 
data of patients scanned with this particular OCT machine were included into this post-hoc analysis.

Treatment schedule; functional and structural assessments.  All patients analysed in this study 
received intravitreal 0.5 mg ranibizumab monthly until stable VA was observed for 3 consecutive monthly visits 
(implying a minimum of 3 consecutive treatments per protocol). The investigators then monitored the patients 
for VA and disease activity on a monthly basis. Monthly ranibizumab injections were reinitiated if monitoring 
indicated a loss of VA resulting from disease activity, and were continued until VA stabilization. In BRIGHTER, 
patients randomized to the ranibizumab with laser arm received macular laser based on investigator discretion 
as reported previously7.

Best-corrected visual acuity (BCVA) was measured by certified, masked examiners at each monthly visit 
using early treatment diabetic retinopathy study (ETDRS) charts. SD-OCT was acquired at each visit by certified, 
masked operators. Using Heidelberg Spectralis OCT instruments, a volume scanning pattern of 512 A-scans × 49 
B-scans covering 20° × 20° centred on the fovea was acquired. Eye tracking and automated real-time averaging 
were activated at 29 frames. Raw data was exported and uploaded to the VRC database.

Automated segmentation of the posterior vitreous boundary.  A custom designed, fully automated 
segmentation algorithm was used to delineate the posterior vitreous boundary in the SD-OCT volume scans. The 
software method is described in detail in the section “Description of segmentation algorithm”. Preliminary ver-
sions of the method have been reported previously18, 19, as well as an extension to retinal fluid and layer segmen-
tation20. In brief, a machine learning algorithm was trained to classify voxels belonging to the posterior vitreous 
boundary in the OCT volumes. The posterior vitreous interface was regarded as a continuous surface and a 3D 
graph cut segmentation algorithm was used to fit an optimal surface through the voxels classified as posterior 
vitreous boundary with highest probability. The segmentation algorithm also delineates the internal limiting 
membrane (ILM). The automated segmentation method was applied on all baseline SD-OCT volume scans to 
delineate the posterior vitreous boundary and the ILM. The distance between the two segmentation surfaces was 
computed at each A-scan and presented as ILM-vitreous distance map (Fig. 1).

Automated classification of vitreomacular adhesion.  To automatically classify the ILM-vitreous dis-
tance maps of each patient into VMA and non-VMA, the histogram of the ILM-vitreous distances at each A-scan 
of the volume was computed. The resulting histograms were automatically clustered by unsupervised machine 
learning using the k-means algorithm21. To evaluate the robustness of the clustering, the number of clusters was 
systematically varied from 2 to 4. The clusters were interpreted clinically by expert evaluation of the ILM-vitreous 
distance map representing the cluster centre (Fig. 2).

Statistical analysis.  This is an exploratory post-hoc analysis of a clinical trial database. Hence, no 
formal hypotheses or adjustments for multiple comparisons were made, and p-values are to be viewed as 
hypothesis-generating. The main outcome measure of this study was the mean change in BCVA at the primary 
endpoint (Month 6 for BRIGHTER, Month 12 for CRYSTAL). Additional outcome measures were the change in 
reading-centre determined central retinal thickness (CRT) as well as the number of administered ranibizumab 
injections at the primary endpoint. The means of the outcome variables were compared between eyes with and 
without VMA using analysis of variance (ANOVA). Moreover, linear regression analysis was performed to assess 
the predictive impact of VMA on BCVA change, including the BCVA at baseline as an independent co-variate. 
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Figure 1.  Fully automated segmentation of the posterior vitreous boundary in 3D optical coherence 
tomography. Panel (A) shows example patients with vitreomacular adhesion, Panel (B) illustrates eyes without 
vitreomacular adhesion. Far left: Central B-scan showing the segmentation obtained by the automated 
algorithm (red line = posterior vitreous boundary). Left: En-face map of the distance between the internal 
limiting membrane and the posterior vitreous boundary for the 6 × 6 mm optical coherence tomography 
volume. Right: Histogram of distances shown in the en-face map used as an input feature for unsupervised 
clustering. Far right: 3D visualization of the internal limiting membrane and the posterior vitreous boundary. 
The bold line in the 3D visualization corresponds to a 90° wedge being cut out of the volume; note that the line 
to the right of the image corresponds to the right half of the provided B-scan, while the part pointing towards 
the observer is perpendicular to the B-scan slice shown on the left.

Figure 2.  Unsupervised clustering of vitreomacular interface configurations. Panel (a) shows clusters for 
branch retinal vein occlusion patients; Panel (b) for central retinal vein occlusion. The Cluster 0 contains 
eyes without vitreomacular adhesion, including both completely attached vitreous and complete posterior 
vitreous detachment. Clusters 1–3 contain eyes with vitreomacular adhesion. If more clusters are chosen, the 
unsupervised algorithm differentiates between shallow and steep vitreomacular adhesion in separate classes.
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The linear regression analysis was performed separately for 2 clusters (VMA presence vs. VMA absence), as well 
as 3 and 4 clusters (VMA absence vs. different degrees of VMA). The formal significance level was set at p = 0.05.

Results
The main outcomes and patient characteristics of CRYSTAL and BRIGHTER have been published previously6, 7.  
All 812 patients randomized in CRYSTAL (n = 357) and BRIGHTER (n = 455) were screened for the current anal-
ysis. Patients receiving macular laser photocoagulation only in BRIGHTER (n = 97) were excluded. Furthermore, 
patients imaged by OCT devices other than Spectralis OCT were excluded, resulting in 391 patients for analysis 
(198 in CRYSTAL; 193 in BRIGHTER).

Automated segmentation and classification of vitreomacular adhesion.  Automated segmen-
tation of the posterior vitreous boundary and generation of ILM-vitreous distance maps was successful in all 
patients. Representative segmentation results and ILM-vitreous distance maps of study eyes are provided in Fig. 1. 
Unsupervised clustering of the ILM-vitreous distance histograms revealed clinically distinctive classes of vitreo-
macular interface configurations (Fig. 2). According to the number of selected clusters (2–4), the k-means algo-
rithm grouped non-VMA eyes; VMA with shallow vitreomacular separation and VMA with steeper adhesions 

Cluster 0 (Non-VMA) Cluster 1 (VMA) p

N= 64 129

Baseline BCVA 
(mean +− SD) 60.42 +− 12.07 57.09 +− 13.23 0.0941

BCVA change at month 
6 (mean +− SD) 11.07 +− 10.75 15.48 +− 11.56 0.0152

Baseline CRT 
(mean +− SD) 358.21 +− 98.36 555.69 +− 182.82 0.0001

CRT change at month 
6 (mean +− SD) −79.80 +− 75.92 −218.06 +− 197.74 0.0140

Baseline ILM-
VIT distance 
(mean +− SD)

1.69 +− 1.85 13.88 +− 13.58 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

4.72 +− 1.14 4.94 +− 0.90 0.1801

Cluster 0 (Non-VMA) Cluster 1 (VMA) Cluster 2 (VMA) p

N= 62 81 50

Baseline BCVA 
(mean +− SD) 60.11 +− 12.14 57.92 +− 13.52 56.28 +−  12.67 0.2916

BCVA change at month 
6 (mean +− SD) 10.93 +− 10.80 17.33 +− 10.20 12.38 +− 12.83 0.0031

Baseline CRT 
(mean +− SD) 362.78 +− 99.07 524.62 +− 135.32 594.50 +− 252.86 0.0008

CRT change at month 
6 (mean +− SD) −85.79 +− 75.09 −198.95 +− 153.10 −234.36 +− 262.61 0.0844

Baseline ILM-
VIT distance 
(mean +− SD)

1.67 +− 1.86 6.67 +− 4.71 25.09 +− 15.34 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

4.67 +− 1.13 4.96 +− 0.89 4.97 +− 0.92 0.2183

Cluster 0 (Non-VMA) Cluster 1 (VMA) Cluster 2 (VMA) Cluster 3 (VMA) p

N= 58 46 51 38

Baseline BCVA 
(mean +− SD) 60.05 +− 12.00 56.87 +− 13.39 59.65 +− 13.40 55.03 +− 12.41 0.2076

BCVA change at month 
6 (mean +− SD) 10.98 +− 11.16 16.07 +− 11.36 16.57 +− 8.68 12.69 +− 13.88 0.0473

Baseline CRT 
(mean +− SD) 355.88 +− 97.65 488.11 +− 106.48 667.73 +− 252.29 509.25 +− 118.28 0.0001

CRT change at month 
6 (mean +− SD) −86.69 +− 110.60 −181.67 +− 149.39 −391.70 +− 278.24 −186.38 +− 164.69 0.0042

Baseline ILM-
VIT distance 
(mean +− SD)

1.53 +− 1.78 6.94 +− 5.89 7.12 +− 3.23 29.67 +− 14.81 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

4.69 +− 1.12 5.05 +− 0.92 4.80 +− 0.92 5.00 +− 0.89 0.3118

Table 1.  Characteristics of vitreomacular interface clusters in branch retinal vein occlusion (BRVO). 
BCVA = best-corrected visual acuity; SD = standard deviation; CRT = central retinal thickness; ILM = internal 
limiting membrane; VIT = posterior vitreous boundary.
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into separate classes (Fig. 2), which was verified by clinical experts (SMW, BSG) after reviewing the cases. The 
mean average distances between the ILM and the posterior vitreous boundary for each cluster are provided in 
Tables 1 and 2.

Visual acuity outcomes in VMA versus non-VMA eyes.  Mean baseline BCVA and BCVA change from 
baseline to the primary endpoint in the different VMA classes are provided for CRYSTAL and BRIGHTER in 
Tables 1 and 2. In CRVO, eyes without VMA showed higher mean baseline BCVA than eyes with VMA, while 
baseline BCVA was similar in eyes with and without VMA in BRVO. In both CRVO and BRVO, eyes showing 
VMA achieved better BCVA gains than eyes without VMA. Eyes showing no VMA (Cluster 0) demonstrated 
overall poorest BCVA gains.

Linear regression models were fitted to evaluate the interaction between baseline BCVA, VMA presence and 
BCVA change to the primary endpoint. In BRVO (using 2 clusters), the model fit for BCVA change was R = 0.30, 
p = 0.03. BCVA at baseline was a significant predictor (p = 0.03) whereas VMA presence was not (p = 0.28). For 
3 clusters, the model fit was R = 0.28, p = 0.05; p = 0.01 for baseline BCVA and p = 0.74 for VMA class. For 4 
clusters, the model fit was R = 0.35, p < 0.01; p < 0.01 for baseline BCVA and p = 0.05 for VMA class. Similarly, 
in CRVO, for 2 clusters, the model fit was R = 0.36, p = 0.01, with BCVA at baseline being a significant predictor 
(p = 0.02) as opposed to VMA presence (p = 0.10). Using 3 clusters, the model fit was R = 0.30, p = 0.05; p = 0.02 

Cluster 0 (non-VMA) Cluster 1 (VMA) p

N= 82 116

Baseline BCVA 
(mean +− SD) 58.35 +− 12.61 50.85 +− 15.52 0.0004

BCVA change at month 
12 (mean +− SD) 9.40 +− 12.99 17.65 +− 13.61 0.0004

Baseline CRT 
(mean +− SD) 630.50 +− 78.50 707.36 +− 300.53 0.7471

CRT change at month 
12 (mean +− SD) −423.50 +− 125.50 −468.40 +− 353.92 0.8747

Baseline ILM-VIT 
distance (mean +− SD) 2.38 +− 2.47 13.71 +− 12.41 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

8.08 +− 2.74 8.32 +− 2.68 0.6470

Cluster 0 (non-VMA) Cluster 1 (VMA) Cluster 2 (VMA) p

N= 44 68 86

Baseline BCVA 
(mean +− SD) 61.00 +− 11.57 54.90 +− 14.23 49.64 +− 15.32 0.0001

BCVA change at month 
12 (mean +− SD) 8.41 +− 13.87 13.00 +− 13.65 17.85 +− 13.08 0.0059

Baseline CRT 
(mean +− SD) 630.50 +− 78.50 485.00 +− 0.00 729.60 +− 306.45 0.7208

CRT change at month 
12 (mean +− SD) −423.50 +− 125.50 −212.00 +− 0.00 −496.89 +− 362.02 0.7593

Baseline ILM-VIT 
distance (mean +− SD) 1.12 +− 0.75 4.57 +− 3.50 16.58 +− 13.05 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

8.00 +− 2.95 7.78 +− 2.55 8.64 +− 2.61 0.3026

Cluster 0 (non-VMA) Cluster 1 (VMA) Cluster 2 (VMA) Cluster 3 (VMA) p

N= 40 57 48 53

Baseline BCVA 
(mean +− SD) 61.56 +− 11.52 55.54 +− 13.26 49.67 +− 15.74 50.45 +− 15.35 0.0004

BCVA change at month 
12 (mean +− SD) 8.97 +− 13.61 11.37 +− 12.89 20.13 +− 17.32 16.27 +− 9.71 0.0058

Baseline CRT 
(mean +− SD) 630.50 +− 78.50 485.00 +− 0.00 709.50 +− 367.10 743.00 +− 257.35 0.8855

CRT change at month 
12 (mean +− SD) −423.50 +− 125.50 −212.00 +− 0.00 −612.00 +− 441.35 −439.33 +− 298.76 0.8143

Baseline ILM-VIT 
distance (mean +− SD) 1.07 +− 0.73 4.35 +− 3.74 6.24 +− 3.73 22.56 +− 13.15 <0.0001

Number of 
ranibizumab injections 
(mean +− SD)

7.89 +− 2.95 7.77 +− 2.68 8.21 +− 2.94 8.94 +− 2.09 0.3290

Table 2.  Characteristics of vitreomacular interface clusters in central retinal vein occlusion (CRVO). 
BCVA = best-corrected visual acuity; SD = standard deviation; CRT = central retinal thickness; ILM = internal 
limiting membrane; VIT = posterior vitreous boundary.
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for baseline BCVA and p = 0.99 for VMA class. For 4 clusters, the model fit was R = 0.32, p = 0.04; p = 0.02 for 
baseline BCVA and p = 0.42 for VMA class.

Anatomical outcomes in VMA versus non-VMA eyes.  Mean baseline CRT and CRT change at the pri-
mary endpoint are provided in Tables 1 and 2. Baseline CRT did not differ among eyes with or without VMA in 
CRVO, while eyes without VMA showed significantly lower baseline CRT compared to eyes with VMA in BRVO. 
Correspondingly, eyes with VMA demonstrated significantly larger CRT reductions at the primary endpoint in 
BRVO. The mean number of ranibizumab injections received up to the primary endpoint did not differ signifi-
cantly between the vitreomacular interface clusters (Tables 1 and 2).

Discussion
In this study, we used fully automated computational analysis based on machine learning to characterize the condi-
tion of the vitreomacular interface in a large dataset of SD-OCT images. The proposed method demonstrated that 
fully automated characterization of retinal morphology is feasible in a large-scale randomized clinical trial setting, 
where manual analysis of SD-OCT images may not be practicable. Our results suggest that patients with VMA may 
show larger functional gains with individualized anti-VEGF therapy in macular oedema secondary to central and 
branch RVO, although this effect was not visible any longer when the analysis was adjusted for baseline BCVA. In 
the era of personalized medicine and the big-data situation entailed by modern OCT imaging, automated analysis of 
ophthalmic imaging is a promising step with the potential to transform clinical care in the future22.

The role of the vitreous in anti-VEGF therapy for exudative macular disease has attracted scientific interest in 
the recent years. While ample data exists in the setting of neovascular age-related macular degeneration, scientific 
studies are scarce in macular oedema of other origins. In anti-VEGF therapy of RVO, which was investigated here, 
Terao et al. reported superior functional and anatomical response to bevacizumab in eyes with VMA11. However, 
their study included only branch RVO and was limited in patient number. On the other hand, a recent study 
by Singh et al. reported no influence of VMA on outcomes of intravitreal therapy for RVO16. Our results show 
a positive impact of VMA on outcomes of anti-VEGF therapy (albeit not confirmed when adjusting for base-
line BCVA) in a much larger number of patients, including those with central RVO, using data of a prospective 
randomized controlled trial. Other studies have investigated the role of VMA in anti-VEGF therapy of diabetic 
macular oedema and of macular oedema in uveitis, with similar results15, 23.

The potential reasons for the interaction between VMA and the response to intravitreal therapy are currently 
poorly understood. Since the vitreous acts as a reservoir for anti-VEGF agents injected into the eye, pharmacoki-
netic mechanisms influencing drug half-life or diffusion in senile vitreous liquefaction or PVD may be responsi-
ble for some of the observed phenomena12. Although the distribution of drug molecules inside the vitreous cavity 
is governed by passive diffusion, the interaction between the vitreous gel and charged large molecules, as well as 
vitreous fluid currents may play a role in drug distribution and clearance within the eye24, 25. Potentially, egress 
of VEGF molecules from the retina is altered by the presence of aqueous instead of vitreous at the vitreomacular 
interface26. Laboratory studies have demonstrated a faster clearance of anti-VEGF agents from vitrectomised 
eyes, which would suggest a shorter half-life of ranibizumab also in eyes with complete PVD and/or senile vitre-
ous liquefaction27. A relatively prolonged clearance of anti-VEGF molecules from eyes with VMA could explain 
the beneficial functional and anatomical outcomes in the presence of VMA in this and other studies. However, 
in neovascular age-related macular degeneration, the presence of a posterior vitreous detachment (PVD) also 
seemed to be associated with reduced needs for retreatment, which clearly contradicts this hypothesis12. Recently, 
investigators have detected that PVD affects the intraocular cytokine levels as measured in the aqueous, which 
may present another contributing factor to the role of the vitreomacular interface configuration in anti-VEGF 
therapy28. Furthermore, the presence of a PVD was associated with improved oxygenation of the retina, which 
may likely alters VEGF expression in the eye29. The finding that eyes with VMA exhibited poorer mean baseline 
BCVA levels (at least in CRVO) may be a sign of increased VEGF load in eyes that have not yet experienced PVD. 
Our study adds clinical evidence supporting a role of VMA in anti-VEGF treatment of RVO, however, further 
experimental studies are required to shed light onto the contributing pathomechanism.

Figure 3.  Local image orientation computed using masked local image moments.
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Ongoing developments in advanced in-vivo imaging continue to change management paradigms in clinical 
practice on a frequent basis30. Particularly in OCT, the ever-increasing resolution and scanning speed allow to 
capture massive amounts of highly detailed morphologic data with each single OCT exam. Unfortunately, inno-
vation in analysing retinal imaging data is significantly lacking behind the rapid development cycles for imaging 
hardware. This dissociation between hardware capabilities and limitations conferred by manual review of hun-
dreds of images has given rise to substantial interest in automated computational analysis methods31, 32. Validated 
software algorithms have the potential to rapidly and reliably process data, capture the morphology of disease in 
a meaningful manner, and provide clinically relevant outcome measures to the ophthalmologist.

In our study, we use a custom-developed, fully automated segmentation algorithm to detect the posterior 
vitreous boundary in relation to the ILM in clinical SD-OCT data. The volumetric segmentation enables exami-
nation of the vitreomacular interface configuration as a ILM-vitreous distance map as well as three-dimensional 
inspection (Fig. 1), which could provide a clinically useful interpretation of the posterior vitreous, e.g. prior to 
vitreoretinal surgery. In addition, we employ unsupervised clustering, a data-driven, hypothesis-independent 
machine learning technique, to automatically group individual study eyes into clinically meaningful morpho-
logical subclasses. Our clustering approach is not limited by arbitrary thresholding or other a-priori constraints. 
Depending on the number of selected clusters, the unsupervised k-means classifier identified clinically distinc-
tive classes of different degrees of VMA, as well as the non-VMA class. Regardless of the number of clusters, the 
non-VMA class consistently demonstrated lowest BCVA gains. However, in the cohort of patients with CRVO, 
eyes without VMA also showed higher baseline BCVA scores, confounding these differences in BCVA gains6.

This study is mainly limited in its retrospective nature. Since the vitreous segmentation algorithm is currently 
only available for Spectralis OCT images, only 55% of the total eligible study population could be used for anal-
ysis. Potentially, the exclusion of patients imaged with other SD-OCT devices may have caused selection bias. 
However, the inclusion of prospectively collected, randomized controlled trial data confers many advantages, 
including a standardized SD-OCT acquisition protocol, treatment regimen and BCVA measurement. Our algo-
rithm is currently being extended to also segment images of other OCT machines. As the algorithm is based on 
a 2D approach, feature discontinuities across different B-scans lead to a slightly reduced smoothness in the final 
3D segmentation results. A feature representation in 3D would result in a smoother segmentation, however, 
this benefit is mitigated by the highly anisotropic voxel size of the Spectralis instrument (~3.8 × 11.1 × 118 µm). 
Furthermore, the non-VMA class detected by our clustering approach may contain both patients with completely 
attached posterior vitreous (where the ILM-vitreous distance is 0) and with complete PVD (where the vitreous 
boundary is antepositioned beyond the OCT scanning range and the distance is therefore unknown). In the 
age group of patients enrolled in the CRYSTAL and BRIGHTER studies, the prevalence of completely attached 

Figure 4.  Masked, rotation invariant eigenvectors used as convolution kernels.

Figure 5.  Prediction of the ILM-RPE class. Solid lines: Manual annotation (ground truth); Dashed lines: Base 
surface segmentation.
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posterior vitreous is reported to be low (14% in patients aged 60–69 years); thus, eyes with complete PVD are 
likely representing the majority of the non-VMA cluster33. Future work will address the use of Fourier-space 
features to investigate alternative means of introducing a degree of rotation invariant features34, 35. Furthermore, 
deep learning approaches, for instance convolutional neural networks (CNN), have been shown as a promising 
way forward for image segmentation in retinal OCT data36.

In conclusion, we have demonstrated the feasibility of fully automated computational diagnosis of VMA in 
a large-scale clinical SD-OCT dataset. Data-driven unsupervised clustering of the segmentation results yielded 
clinically meaningful subclasses of non-VMA as well as different degrees of VMA. In macular oedema secondary 
to branch and central RVO, eyes with VMA afforded larger functional benefits from anti-VEGF therapy, although 
this association diminished after adjustment for baseline BCVA. Automated computational analysis of ophthal-
mic imaging data may help to characterize morphologic changes on OCT effectively, and may facilitate clinical 
management in a field of high-throughput patient care in the future.

Description of the segmentation algorithm.  In order to fully automatically segment the posterior vit-
reous boundary, we designed an image processing pipeline consisting of four major steps: (1) feature extraction, 
(2) 5 class region prediction, (3) 3D graph theoretic segmentation and (4) auto-context refinement.

We treat the vitreomacular segmentation problem as a voxel-wise region probability prediction problem and 
define the retinal layer surfaces as the boundaries between these regions. The regions used in this algorithm are 
from exterior to interior the vitreous, the posterior vitreous boundary, the space between the posterior vitreous 
boundary and the inner limiting membrane, the retina (i.e. the space between ILM and the retinal pigment epi-
thelium (RPE)) and the space exterior of the RPE.

The final surface segmentation is then defined as the set of four boundaries (i.e. the top and the bottom surface 
of the posterior vitreous boundary, the ILM and the RPE) that separate the interior from the exterior part of the 
OCT volume so that the corresponding regions lie above respectively below them.

Figure 6.  Prediction of the ILM-RPE class after two auto-context iterations. Solid lines: Manual annotation 
(ground truth); Dashed lines: Refined surface segmentation.

Figure 7.  Difference between manual and automatic segmentation (in pixels). Left: correlation between manual 
and automatic segmentation (note logarithmic colour scale), Right: Histogram of errors.
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Rotation invariant eigenfeatures.  The performance of the machine learning algorithm used in a late 
stage of the pipeline depends heavily on the descriptiveness of the features used to train it. Instead of hand crafting 
suitable features we used the principle component analysis (PCA) of small image patches as way of learning con-
volution filters. To furthermore increase the descriptive power of these features, a degree of rotation invariance 
was introduced by computing the local orientation of small image patches centred around each voxel and rotating 
the corresponding convolution filter accordingly37.

For each image patch I the raw image moment is defined as = ∑ ∑ ∗ ∗M x y I x y[ , ]pq x y
p q  and the centroid as 
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patches we use circular image patches. This can be achieved by replacing the raw image moment Mpq by the 
masked image moment = ∑ ∑ ∗ ∗ ∗M̂ x y I x y mask x y[ , ] [ , ]pq x y

p q  with mask[x, y] being 0 outside and 1 inside 
the circular patches.

By extracting sliding windows I of size 21 × 21 pixels and computing ϕ(I) for each window a map of the local 
orientations can be generated (Fig. 3).

Using the local image orientation, we can now extract small 21 × 21 masked image patches I and rotate them 
by ϕ(I). This rotated image patches are the used in a principal component analysis (PCA) to compute the first 20 
eigenvectors of the patches. These eigenvectors (shown in Fig. 4) are then used as convolution kernels resulting in 
the image features used for the machine learning algorithm, as described in detail elsewhere20.

Voxelwise region prediction.  After computing the voxel wise features as described above we trained a 
random forest classifier38 on 337 B-scans of 88 macula-centred SD-OCT scans in which the posterior vitreous 
boundary was manually annotated by trained readers of the Vienna Reading Center as described previously39. 
Since only the exterior boundary of the vitreous cortex is of interest and was thus annotated we assumed the 
vitreous cortex region to be at least 3 voxels thick and excluded 20 voxels above the annotation from the training.

For each voxel in the training set, the random forest classifier is presented with the feature vector computed 
above and a label encoding which of the 5 classes the voxel belongs to (above vitreous, VMI, VMI-ILM, ILM-RPE 

Figure 8.  Increase in segmentation accuracy due to auto-context approach. Red dots indicate the signed error 
of each A-scan in the test set (with random horizontal displacement for visualization purposes), white markers 
show quartile and median error values.
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and below RPE). Using this information, the classifier is able to predict the probability that a previously unseen 
voxel belongs to any of the 5 classes. Figure 5 illustrates an example of the probability map for the ILM-RPE class.

Surface extraction.  In order to extract the surface segmentation from the generated probability maps we 
used a 3D graph theoretic approach described by Garvin et al.40. This graph cut approach requires for each voxel 
a cost term that represents the penalty or benefit of that voxel being below or above the final segmentation. Since 
the result of the classifier used in the previous step directly encodes this information, the generated probability 
maps can directly be used as region cost terms. For example, to segment the ILM the sum of the regions vitreous, 
vitreous cortex and between vitreous cortex and ILM is used as region cost in the graph theoretic approach. The 
dashed lines shown in Fig. 5 show the result of such a segmentation.

Iterative improvement.  As shown in Fig. 5, the segmentation results (while mostly correct) contain severe 
segmentation errors. In order to improve the result, we apply a technique called auto-context in a similar manner 
as described previously37, 41. We compute for each voxel the axial distance to all extracted surfaces and extract raw 
probability samples of certain classes in the close neighbourhood of the voxels (e.g. what is the probability that the 
voxel above me belongs to the ILM-RPE region?). These distances and samples are then merged with the image 
features described previously. Together they are used to train a second classifier that can leverage the information 
learned by the first classifier. This process can be repeated multiple times to iteratively improve the segmentation 
results.

The probability map and the surface segmentation after two such iterations can be seen in Fig. 6. Note that the 
large segmentation errors are mostly gone and the segmentation approaches the ground truth.

Validation of segmentation algorithm.  The segmentation accuracy of the proposed method was tested 
by comparing the pixel distance between the ILM and the posterior vitreous boundary as determined by the 
algorithm against the manual annotation. For this purpose, 11 SD-OCT volumes (with a total of 26,189 anno-
tated A-scans) were randomly chosen from the data set and excluded from the training set used in the steps 
described above. For each A-scan the difference between the automatic and the manual segmentation was calcu-
lated (Fig. 7).

As shown in Fig. 8, the iterative improvement method described above increases the segmentation accu-
racy significantly after only a few iterations. However, due to the higher computation costs and the diminishing 
increase in segmentation accuracy, only few iterations are practicable.
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