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Abstract—Prediction of treatment responses from available
data is key to optimizing personalized treatment. Retinal diseases
are treated over long periods and patients’ response patterns
differ substantially, ranging from a complete response to a
recurrence of the disease and need for re-treatment at different
intervals. Linking observable variables in high-dimensional ob-
servations to outcome is challenging. In this paper, we present and
evaluate two different data-driven machine learning approaches
operating in a high-dimensional feature space: sparse logistic
regression and Random Forests based extra trees (ET). Both
identify spatio-temporal signatures based on retinal thickness fea-
tures measured in longitudinal spectral-domain optical coherence
tomography (OCT) imaging data and predict individual patient
outcome using these quantitative characteristics. We demonstrate
on a dataset of monthly SD-OCT scans of 155 patients with
central retinal vein occlusion (CRVO) and 92 patients with
branch retinal vein occlusion (BRVO) followed over one year
that we can predict from initial 3 observations if the treated
disease will recurr within the covered interval. ET predicts
the outcome on 5-fold cross-validation with an area under the
receiver operating characteristic curve (AuC) of 0.83 for BRVO
and 0.76 for CRVO. Logistic regression achieved an AuC of 0.78
and 0.79 respectively. At the same time the methods identified
stable predictive signatures in the longitudinal imaging data that
are the basis for accurate prediction. Furthermore, our results
show that taking spatio-temporal features into account improves
accuracy compared to features extracted at a single time-point.
Our results demonstrate the feasibility of mining longitudinal
data for predictive signatures, and building predictive models
based on observed data.

Index Terms—Predictive models, biomarkers, optical coher-
ence tomography.

I. INTRODUCTION

PRECISION medicine aims to deliver appropriate and

timely treatment for each individual patient. Its diagnos-

tic, prognostic, and therapeutic strategies enable optimal effi-

cacy while reducing potential treatment-related morbidity [1].
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The primary challenge in precision medicine is identifying

predictive markers for future disease progression and treatment

response. In this paper we demonstrate that such spatio-

temporal signatures and corresponding predictive models can

be learned from large-scale imaging data, without explicit

patho-physiological models of disease mechanisms.

A. Background, Disease and Treatment Options

Identifying biomarkers able to differentiate patients into

clinically meaningful subgroups of disease, outcome or treat-

ment response is an important unmet medical need in precision

medicine. However, the vast amount of biomedical data col-

lected from molecular, genetic, and imaging sources renders

extraction of relevant predictive biomarkers difficult [2]. Data-

driven approaches based on machine-learning are promising

avenues to identify and validate robust and sensitive biomark-

ers in big data [3].

Retinal vein occlusion (RVO), caused by obstruction of the

retinal venous system, is the second-most common retinal vas-

cular disease after diabetic retinopathy [4] with an estimated

16.4 million adults affected worldwide [5]. RVO is divided into

central retinal vein occlusion (CRVO) and branch retinal vein

occlusion (BRVO), depending whether the site of occlusion

is at the central retinal vein or at a retinal branch vein. The

increase in hydrostatic pressure due to the veinous obstruction

results in fluid extravasation, swelling of the central retina

(macular edema), hemorrhage, and frequently retinal ischemia.

Untreated, this disease ultimately results in irreversible visual

impairment [6].

Intra-ocular injections of anti-vascular endothelial growth

factor antibodies (e.g., ranibizumab (Lucentis, Genentech,

Inc., South San Francisco, CA)) are the current state-of-

the-art therapy for macular edema in both CRVO [7] and

BRVO [8]. They generally lead to a substantial reduction in

macular edema and a restoration of visual acuity. However,

regular clinic visits and continuous treatment with intra-ocular

injections are required to prevent recurrent edema formation

in most patients. Medication costs of ∼ $2000 per injection

and the high-frequency of visits put a substantial burden on

patients and the health-care system [6]. In addition, intra-

ocular injections are invasive and may confer serious side-

effects such as the risk of devastating intra-ocular infection

(endophthalmitis) [9]. Thus, a treatment paradigm based on

precision medicine with the goal of reducing unnecessary
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Fig. 1. Three-dimensional reconstruction of fovea centered optical coherence
tomography (OCT) scans. (a) Healthy retina with the fovea pit in the center;
(b) retinal swelling (macular edema) caused by central retinal vein occlusion;
(c) cut through volumetric scan showing cystoid intraretinal and subretinal
fluid (blue arrow); (d) distribution of edema within the retina.

monitoring visits and injections is desired to relieve the major

socioeconomic and personal burdens. Predicting disease-free

stability is an extremely difficult problem and thus patients

are often seen infinitely to avoid the miss of a recurrence.

Consequently, the reliable prediction of the individual future

response to therapy is an essential step.

In current clinical practice, patients are monitored at

monthly intervals using spectral domain OCT (SD-OCT) [10],

which provides a 3-dimensional reconstruction of the retina

at a micrometer resolution. SD-OCT reveals detailed in vivo

information about pathologic changes in the retina, such as

cystoid and subretinal fluid in macular edema secondary to

RVO (Fig. 1). These micro-morphology changes within the

retina are the candidate features for the proposed algorithm.

B. State-of-the-art

Identifying predictive features in a high dimensional pool of

pixel-wise extracted candidates within a relatively small sam-

ple size is based on a family of regression methods that assume

only a small number of the variables observed are linked to a

prediction target. Methods such as least absolute shrinkage and

selection operator (LASSO) [11] or elastic net [12] perform

regularization inducing sparseness and produce predictive and

interpretable results in multiple areas of medical imaging such

as predictions from structural neuroimages [13], functional

magnetic resonance imaging (fMRI) data [14] and microarray

data [12]. Rasmussen et al. [15] discussed the influence of

sparsity regularization parameters on interpretability of the

fMRI classification model. They concluded that networks may

be overseen when tuning sparsity on maximizing prediction

accuracy only and proposed a more careful selection of

regularization parameters for visualization. Hastie et al. [16]

suggested the “one-standard error” rule should be used for

model interpretation. Thereby, the most parsimonious model

is chosen whose error is no more than one standard error above

the minimum error determined in a cross validation setting.

Another strategy of obtaining a predictive model in the high

dimension and small sample size environment is selecting im-

portant features and training a model using the random forests

(RF) algorithm [17]. Such an approach has been applied

successfully in, amongst many others, fMRI analysis [18],

brain lesion segmentation [19], gene analysis [20] and glau-

coma diagnosis [21]. Recently, machine learning algorithms

have been applied on retinal OCT images for prediction. De

Sisternes et al. used LASSO regularization in their statistical

model to to predict the progression of age-related macular

degeneration (AMD) from quantitative features extracted from

the images [22]. Quantitative OCT features combined with a

machine-learning algorithm were also used by Bogunović et

al. [23] to predict the treatment response from retinal OCT

in patients with AMD. Niu et al. [24] used a RF based

approach to predict geographic atrophy progression for a

future time-point from SD-OCT image features, and to identify

the relevant features based on RF out-of-bag (OOB) feature

importance measure.

C. Contribution

We propose a data-driven machine-learning approach that

identifies predictive spatio-temporal imaging biomarkers or

predictive signatures and corresponding prediction models in

large-scale SD-OCT data of patients with CRVO or BRVO

to predict whether a treated macular edema will recur within

the observed interval from initial images. This proposal is a

substantial extension of previous work [25]. First, we nor-

malize all imaging data across scans and patients to a joint

reference space using automatically detected and matched

fundus and OCT image landmarks. In this space, we can

compare local imaging features across different scanning

protocols and scanner vendors, across patients and during

follow-up examinations. Second, we extract pixel-wise feature

maps covering the underlying retinal morphologic structure

and changes over time from the aligned scans. This results

in a high dimensional vector of feature candidates for each

scan and each patient. Third, we treat prediction and signature

identification as a sparse regression problem, and evaluate dif-

ferent techniques for prediction and prediction regularization

while preventing overfitting to the training data. We evaluate

the logistic regression generalized linear model (GLM) with

sparsity regularization assuming that only a fraction of the

features contain predictive information. We also evaluate “ex-

tremly randomized trees” or extra trees (ET), [26] based on the

RF classifier of Breiman [17] that is able to select important

features for prediction without overfitting to the data due to

the randomness in the decision tree ensemble [26].

II. METHOD

The proposed method consists of three parts: first the

transformation of imaging data into a joint reference space,

second the extraction of individual spatio-temporal features

from the images, and third the prediction of disease recurrence

based on the features using a machine learning approach.

A. Joint Reference Space of Fovea-centered Retinal Images

As a first step, we normalize the longitudinal OCT scans

from all patients by transforming them into a joint reference

space to enable comparisons among the population. We pro-

pose an en face two-dimensional projection reference space,

with the transformations obtained from a two-step intra- and

inter-patient registration process (Fig. 2a). The retinal vessel

structure segmented from the OCT projection image serves

as the basis for stable corresponding landmarks in the intra-

patient registration. The center of the fovea and of the optic

nerve head (ONH) are the guiding landmarks in the inter-

patient registration process.
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Fig. 2. Processing steps to obtain spatio-temporal disease signatures. (a) Intra-patient registration using vessel segmentation and inter-patient registration usint
the fovea center and optic nerve head (ONH) landmarks, respectively, to obtain a joint reference space. (b) Automatic layer segmentation to obtain total retinal
thickness (TRT) maps. Finally, TRT maps are transformed into the joint reference space.

The registration pipeline contains following steps. First, in a

preprocessing step, we reduce motion artifacts in x-direction

introduced by patient and eye movement during acquisition

using the method described by Montuoro et al. [27]. The

retinal layers are then segmented using a graph-based surface

segmentation algorithm [28] with the uppermost and lower-

most layers being the inner limiting membrane (ILM) and the

retinal pigment epithelium (RPE), respectively (Fig. 2b). We

segment the vessel structure in the OCT projection image for

the intra-patient registration as proposed by Wu et al. [29].

Vessels, amongst other (pathologic) structures, cause shadows

in the layers beneath them. We obtain a projection P of these

structures on a 2D surface by averaging intensity values from

the RPE surface to 20 µm towards the ILM. We segment vessel

structures after denoising P using BM3D [30] and masking

pathologic shadow structures, which in contrast to vessels are

amorphous and not tube shaped, using the multiscale Frangi

vesselness filter [31] with windows sizes 4×4, 2×2, 2×1, and

1 × 2. The final vessel segmentation is obtained by applying

region growing on each filter image with pixels having the

highest intensity values as seed points and combining them

by using the intersection of all candidate segmentations. The

intra-patient affine transformation is obtained by applying

coherent point drift [32] to the segmented retinal vessel point

sets.

The population-wide normalization is performed by aligning

the fovea and ONH center across patients. Because the ONH

is not visible in macular-centered OCT images, we use the

corresponding confocal scanning laser ophthalmoscope (SLO)

fundus image, which is registered to the OCT either by

scanner software or by using a rigid registration minimizing

the normalized cross-correlation of intensity values of the

projection image P and the SLO image. The ONH center is

detected automatically by thresholding the adaptive contrast

enhanced SLO image and applying a RANSAC-based circle

detection [33] which segments the optic disc. The circle center

is considered to be the ONH center position. The fovea center

landmark is obtained automatically by an algorithm described

in [34]. The affine transformation, T , that warps a scan into the

reference frame consists of scaling, rotation and translation.

The scaling parameter is obtained by normalizing the distance

between ONH and fovea center to a population mean of

4.3mm [35]. The translation parameter is obtained by shifting

the fovea center location to the coordinate origin (0,0). The

rotation parameter is obtained by rotating around the fovea

center such that the angle between the fovea and the center of

the optic disc versus the horizon is 5.6◦, which is the reported

population mean [36]. The various image and pixel resolutions

are unified finally by resampling P to a 250 × 250 image

with an isotropic pixel resolution of 30 µm and the coordinate

origin being at the image center using linear interpolation.

B. Individual Spatio-temporal Signature of Disease

The morphology of the retina and the underlying disease

is modeled as a total retinal thickness (TRT) map, M trt .

It represents the distance between the segmented ILM and

RPE layer in µm units at each point (Fig. 2b). The map is

transformed into the joint reference space by applying the

affine transformation, T , obtained previously and resampling
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it to the isotropic resolution. Finally, the map is smoothed with

a Gaussian of σ = 1.0 to reduce noise in the data.

An additional map is derived from M trt containing the

image gradient magnitude, M gm := ||∇M trt ||, which is

computed by filtering M trt using a Gaussian derivate kernel

with a σ of 3. The steepness of the retina at each spatial

position is modeled with Mgm . Fig. 3a illustrates the feature

maps extracted for an individual patient. From these maps

a spatio-temporal signature describing the morphologic status

and changes in the retina are created in the following way: Let

v(m) be a row vector containing the vectorized values of the

thickness map M trt for month m, and v
(m)
G be the vectorized

Mgm maps. We obtain a disease signature vector, x(m) (Fig.

3b) describing the development of a disease up to month m
by concatenating the vectorized maps and the change relative

to baseline (= month 0), ∆M :

x
(m) = (v(0)

,v
(1)

, . . . ,v
(m)

,v
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− v
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G
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G
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Further clinical variables and covariates (e.g. age) can be

included by adding them to the feature vector.

Finally, a design matrix X(m) ∈ R
n×p is created for

training and evaluation of a machine learning algorithm by

pooling the signature vectors with a total length of p from n

patients. Each row represents a signature vector x
(m)
i for a

patient, and each column is a distinct spatio-temporal feature

from an anatomical region in the retina.

C. Prediction of Disease Recurrence

We predict treatment response in terms of a clinically

relevant classification task based on the spatio-temporal sig-

natures. In particular, we predict whether a patient will suffer

from recurring edema within the period of 1 year after receiv-

ing initial treatment of 3 monthly injections (loading phase).

The prediction is based on the signature vector describing the

treatment response in this loading phase. Fig. 4 illustrates a

time-series of the maps for patients with and without recurrent

edema. Formally, we predict from the signature vector x(2)

the binary outcome variable, y encoding recurrence of edema

within the observed period (y = 1) or non-recurrence (y = 0)

using a predictive model based on the training data, X(2). We

use GLM with a sparseness regularization of the coefficients

and ET. Both operate in a high-dimension and small sample

size setting with feature selection embedded in the algorithms.

In the following, we drop the index (m) for notational clarity.

1) Prediction by sparse logistic regression: The sparse

logistic regression is based on the GLM, where a linear relation

between the input covariates x and a response function f(y)
based on the outcome variable y is assumed. The relation

is formulated as a weighted linear combination: f(y) =
w0+w1x1+w2x2+w3x3+ ...+wpxp = xw. The probability

P of belonging to a class P = Pr(y = 1|x) or its log-

odds is used for binary outcome variables in the GLM setting:

logit(P ) = log( P
1−P

) = xw.

We imply that only a small subset of features is necessary

for a predictive model and thus introduce sparsity of the

coefficients as prior information. Tibshirani proposed the L1

norm on w as regularization, known as LASSO [11]. When

features are strongly correlated, LASSO picks only one of

them at random and in case of p > n the solution has at

most n non-zero weights [37]. Thus, Zou and Hastie proposed

a combined L1 and L2 regularization to overcome these

limitations, denoted as elastic net [38]. We use this approach,

because we have a strong correlation of spatially adjacent

features.

The weights w are estimated from the design matrix X

using a maximum likelihood estimation (MLE) by minimizing

following log-likelihood loss function:

argmin
w

− 1

n

n∑

i=1

yix
T
i w − ln(1 + exp(xT

i w))+

+λ

Å

ρ||w||1 +
1− ρ

2
||w||22

ã

(2)

The non-negative parameter λ specifies the general amount of

regularization, whereas ρ defines the ratio between LASSO

(ρ = 1) and the ridge (ρ = 0) penalty. The class probability

P is predicted using the trained weights w and the inverse

logit for a new case with covariates xk: p = logit−1(xkw) .

Features with non-zero coefficients w are characteristic

spatio-temporal regions selected for prediction. We are able

to identify and interpret these regions by mapping the weight

vector back to the 2D images (Fig. 3c).

We used the “glmnet” package from the statistics software

R for our computations, which optimizes (2) using a coor-

dinate descent approach [39]. Changes in the regularization

parameters, λ and ρ, have a major influence on the predictive

performance of the model. Whereas an optimal λ is determined

by the “glmnet” algorithm, ρ has to be set beforehand.

We use a covariance matrix adaptation evolutionary strategy

(CMA-ES) [40] for an efficient hyper-parameter search of ρ,

implemented in the “Optunity” software package [41]. We use

area under ROC curve (AuC), which is determined in a cross-

validation (CV) setup, as the loss function in the CMA-ES

optimization process.

2) Prediction by extremly randomized trees: In the ET

algorithm, each decision tree is built from a bootstrap sample

of the training set. Each split in the tree is chosen among the

best split from a random subset of all features. In contrast

to RF where the optimal split threshold at each node in the

tree is determined, in ET random thresholds are drawn for

each candidate feature and the one resulting in the best split

is picked. The quality of a split is determined by an impurity

criterion. ET uses the normalized information gain based on

information entropy [26].

ET provides an “importance” score for each feature that

is computed from all nodes where the feature was chosen as

splitting criteria, and averaging the reduction of the impurity

criterion at each of these nodes to its child nodes over all

trees, weighted by the proportion of samples reaching the

node. Features chosen at the top of the tree contribute more

to the feature importance score due to the larger fraction of

input samples. We obtain a feature importance vector, f imp , by

computing the importance score for each feature. Analogous to

the weights from the sparse logistic regression method, f imp
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Fig. 3. Feature extraction and interpretation. (a) Feature maps in the joint reference space extracted from one patient’s time series. (Left, M trt ) Total retinal
thicknesss (TRTs) for the first 3 months and the difference to baseline (BSL). (Right, Mgm ) Maps of the TRT gradient magnitudes and difference to baseline.
(b) The feature maps are vectorized to obtain a signature vector xi. To train a model, the vectors are pooled into a design matrix X . (c) Both prediction
models provide a measurement of the predictive power of each feature w and f imp for elastic net and extra trees, respectively. By remapping this vector we
obtain predictive feature maps, which reveal anatomical regions that have influence on the outcome.
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Fig. 4. 12 month follow-up series of total retinal thickness maps in the joint
reference space for two patients, one with recurring edema (red arrows), and
the other without recurrence. All patients were treated at the first three months
(loading phase), followed by a individual treatment after recurring edema. The
outcome (recurrence vs. non-recurrence) is predicted from treatment response
in the loading phase, encoded as a signature vector.

are mapped back to a 2D image, and are used for interpretation

of the model (Fig. 3c).

The main hyper-parameters are the number of trees (ntrees )

and the number of features to consider when splitting a node

(mfeat ). Empirically, good default values for mfeat are in the

range of
√
p to 1/2p, where p is the total number of features.

In our experiments, we set ntrees = 500 and determined the

optimal value of mfeat within the proposed range using the

CMA-ES algorithm described above. The out-of-bag (OOB)

error estimate, which is the error obtained by testing each tree

on samples not included in the bootstrap set of that tree, is

used as the loss function. In our experiments we used the

ET implementation from the “scikit-learn” toolbox (Version

0.16.1) [42].

Using the method described, we predict the outcome for a

new patient receiving treatment based on extracted imaging

features that are transformed in a joint reference space com-

bined with the prediction model trained on examples observed

previously. The embedded feature selection in the prediction

model serves as the basis for interpretation of predictive spatio-

temporal features.

III. EXPERIMENTS & RESULTS

A. Patient Data

We evaluated the method on a dataset containing one

eye each from patients with CRVO (n = 155) and with

BRVO (n = 92) followed over 12 months. The study was

conducted in compliance with the Declaration of Helsinki

and all participants provided written informed consent before

inclusion. Approval was obtained from the ethics committee

at the Medical University of Vienna and at each study site

where images were acquired. All retinal SD-OCT images were

acquired from patients at monthly intervals. Patients received

ranibizumab injections for the first 3 months (loading phase),

followed by treatment based on individual need that depended

on visual acuity response and OCT fluid variables.

6 × 6-mm macular-centered volumetric images were ac-

quired at two different scanner types, Cirrus HD-OCT R© (Carl

Zeiss Meditec, Dublin, CA; nCRVO = 44, nBRVO = 33),

having a resolution of 200× 200× 1024 and a voxel spacing

of approx. 30 µm× 30 µm× 1.96 µm, and Spectralis OCT R©

(Heidelberg Engineering, Dossenheim, GER, nCRVO =
111, nBRVO = 59), having a resolution of 512 × 49 × 496
and a voxel spacing of 11 µm× 119 µm× 3.87 µm.

This dataset allowed us to evaluate and assess the hetero-

geneous characteristics of retinal vein occlusion diseases by

including two disease subtypes. By pooling data from two

scanner types and transforming them into the joint reference

space, we were able to increase the total number of samples

and to provide comparable time-series, which are independent

of resolution and specific imaging properties originating from

the different scanner types.

Total retinal thickness and gradient magnitude maps were

computed and transformed into the joint reference space
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Fig. 5. Scanning laser ophthalmoscope (SLO) fundus image of a left eye
with the optic disk located nasally. (a) Early treatment diabetic retinopathy
study (ETDRS) grid dividing the macula into 9 subregions of interest as
defined in [44]. Anatomic directions: nasal (N), temporal (T), superior (S)
and inferior (I). (b) Overlay of a predictive signature map.

as described in Section II-A. Spectralis scanners provide a

hardware motion correction via eye-tracking and an alignment

of OCT follow-up scans via scanner software. Hence, motion

correction and intra-patient registration were skipped for this

scanner type. Due to varying field-of-views in the registered

SD-OCT images not all scans cover the whole 3mm radius

around the fovea. Thus, pixels in the TRT feature maps

with more than 5% missing values were discarded and the

other missing values were imputed using kNN imputation [43]

using the 10 nearest TRT maps. Hence, the final feature map

covered a 4.74 mm and 5.13 mm diameter in CRVO and

in BRVO, respectively. We verified the correctness of intra-

patient and inter-patient registration in all cases by validating

the correct alignment of follow-up images by overlaying the

en-face projections P and by validating the correct placement

of fovea and ONH center positions. Furthermore, the correct

segmentation of the layers have been approved by visual

inspection of all TRT maps.

The time-point of recurring edema was determined algo-

rithmically, serving as a standard-of-reference for evaluation.

First, the aligned total retinal thickness maps, M trt , were

divided into nine circular sections centered at the fovea, within

three concentric circles of diameters 1, 3 and 6mm, as defined

by the early treatment diabetic retinopathy study (ETDRS)

design [44] (Fig. 5a). The mean thickness was computed

for each section. An increase in mean thickness of more

than 29 µm between two subsequent timepoints in any region

was defined as recurrent edema. This threshold had been

determined based on 46 cases, where time-point of recurrence

was manually assigned. 28 patients (= 18%) with CRVO and

20 (= 22%) with BRVO did not show any recurrent edema

within the 12 month follow-up.

B. Evaluation

The evaluation covered the two main aspects of the proposed

technique that the models predict outcome accurately and

provide interpretable results. First, we evaluated the algo-

rithmic prediction accuracy for the two different regression

approaches based on the known outcome at month 12 (edema

recurrence). We varied the number of months and specific

features taken into account. Second, we assessed the au-

tomatically identified predictive signatures observed in the

imaging data and how hyper-parameters influenced signature

interpretability.

1) Prediction accuracy: We measured the generalization of

the proposed models using a nested five-fold stratified CV

partitioning on the patient level to iteratively split the data into

training and test sets. ET and GLM models were trained on

each fold with an increasing number of months available, up to

3 months, to quantify the benefit of using longitudinal informa-

tion as opposed to only baseline data. To assess the efficacy

of the feature groups for prediction accuracy, we computed

models with combinations from the features M trt , M gm

and ∆M . The performance measure we used was ROC AuC

computed from the probabilistic outcomes of the classifiers on

the test folds as well as sensitivity and specificity computed

from a threshold of the probabilities. The optimal threshold

was determined by maximizing the F1-score on the training

fold and applying it to the outcome of the test fold. F1-score is

the harmonic mean of sensitivity and precision. It is computed

as: 2 ·TP/(2 ·TP +FP +FN ), where TP , FP , and FN are

the number of true positive, false positive and false negative

cases, respectively. Due to the randomness in CV partitioning

and the ET algorithm, we repeated the evaluation 20 times and

computed the mean AuC by vertical averaging [45] as well as

the sensitivity and specificity from the summed up confusion

matrices. Furthermore, 95 % confidence intervals (CIs) for

ROC AuC were obtained by stratified bootstrapping using the

R package “pROC” [46]. CIs for sensitivity/specificity were

computed from the mean values of the confusion matrices

using Newcombe’s efficient-score method [47]. The hyper-

parameters ρ, λ and mfeat were tuned on the training folds

with 100 iterations using the CMA-ES algorithm combined

respectively with the AuC and OOB error loss function, as

described in the Methods section.

2) Predictive signature maps: Because each feature of the

predictive signature corresponds to a distinct spatio-temporal

location, the vectors w and f imp can be mapped back to

the 2D retina projection, resulting in coefficient maps and

feature importance maps, respectively (Fig. 5b). For clarity,

we denote these maps subsequently as predictive signature

maps. Our evaluation of the predictive signature maps was

two-fold. First, we computed predictive signature maps from

the best-performing models for each disease and assessed them

from a clinical perspective. Second, we analyzed according to

Rasmussen et al. [15] how the hyper-parameters λ and ρ, as

well as mfeat and ntrees influence the feature selection and

interpretability of the predictive signature maps, by varying

each of these paramaters while keeping the other one fixed.

a) Parameters: We chose the best-performing models

and hyper-parameters, i.e. those with the highest AuC score of

the prediction accuracy evaluation, for the assessment of the

predictive signature maps. These were the 3-month M trt &

Mgm & ∆M feature-set for BRVO and the 3-month M trt &

∆M for CRVO. ρ was set to 0.1 and λ tuned by the glmnet

algorithm such that the prediction error is minimized in a

five-fold CV. We denote this value as mincv . Alternatively,

λ was set to be the most regularized version that is within 1

standard error (SE) to the mincv model, as proposed in [48].

This so-called “one-standard error” rule results in a simpler but
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still predictive model, and may lead to a better interpretabil-

ity [16]. We denote the model as 1secv . In the ET model, the

parameters were set to the following values: ntrees = 5000,

mfeat = 0.5. Whereas the highest performance was obtained

already with fewer trees and features, the accuracy did not drop

by extending the forest and number of features, although the

predictive signature maps became less noisy with an increasing

number of trees.

The influence of the hyper-parameters were evaluated by

fixing one parameter and varying the other one when com-

puting a model. For the logistic regression models, λ was

fixed at mincv and ρ varied over {0.5, 0.1, 0.01, 0.001}.

For a fixed ρ of 0.01, we computed models for λ from

{1.0,mincv , 1secv , 15.0}. The ET models were computed for

mfeat of 0.5× p and ntrees varied over {50, 100, 500, 5000},

where p is the overall number of features. Finally, for a fixed

ntrees of 5000 we trained models for mfeat = {log2 p,
√
p,

p/3, p/2}.

C. Results

1) Prediction accuracy: All classification results are listed

in Table I and Table II for BRVO and CRVO, respectively.

In BRVO, the recurrence of edema was predicted from the

first 3 months with an AuC of 0.83 (Fig. 6a) and a sensi-

tivity/specificity of 0.77/0.77 using the feature-set M trt &

Mgm & ∆M and the ET model. Using features from the first

month only resulted in a drop of AuC to 0.77. Better results

were obtained in BRVO using extra trees than by logistic

regression, which had a maximum AuC of 0.78. Prediction

performance in CRVO was slightly inferior to BRVO with an

AuC of 0.79 and a sensitivity/specificity of 0.67/0.79. Logistic

regression outperformed extra trees (Fig. 6b). Accuracy using

features from the first month only was already high with

an AuC of 0.78 and 0.77 for logistic regression and extra

trees, respectively. Prediction in BRVO also benefited from the

derived features Mgm and ∆M by improving the sensitivity.

Although, upon adding Mgm to the CRVO model, the AuC

and sensitivity declined in the logistic regression model, and,

to a lesser degree, in the ET model. ET feature selection seems

to be less sensitive to irrelevant features, and provides a more

constant prediction accuracy when including or excluding

Mgm features.

2) Predictive signature maps: Predictive signature maps

for the models with the highest AuC values are presented

in Fig. 7 (BRVO) and Fig. 8 (CRVO). Both methods se-

lected distinct predictive regions for both diseases. There is

an overlap between regions selected by ET and by mincv

logistic regression, with ET regions being more extended. The

λ = 1secv model is less noisy than λ = mincv and selected

mostly regions from baseline foveal and parafoveal areas.

In Fig. 9, we illustrate on one example how changes in

hyper-parameter values affect the predictive signature maps.

Decreasing the amount of regularization by lowering λ re-

sulted in additional predictive areas appearing. Increasing the

ratio of L2 regularization by decreasing ρ caused mainly a

dilation of the areas around already selected sparse regions.

For the ET model, increasing ntrees or mfeat led to a sharper
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Fig. 6. Area under ROC curve (AuC) curve for (a) branch retinal vein
occlusion (BRVO) and (b) central retinal vein occlusion (CRVO) with the
best-performing feature set. The 3-month M trt & Mgm & ∆M feature set
was used for BRVO and the 3-month M trt & ∆M for CRVO.

feature relevance map with more defined “important” areas, as

illustrated in 9b. A reduced number of ntrees caused a noisier

and speckled predictive signature map. A reduction in mfeat

led to a more diffuse and blurred map.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a longitudinal data-driven

method to predict the future treatment outcome in terms of

recurring edema based on imaging features extracted from

SD-OCT images. By transforming these imaging features

into a joint reference space based on intra- and inter-patient

registration we were able to compensate for anatomical vari-

ations and scanning positions, and to maintain vendors and

spatial resolutions as invariant. We evaluated two different

models operating with high dimensional data and low sample-

size, which are elastic net regularized logistic regression and

extra trees, a tree-based ensembling method. We demonstrated

that both of the approaches analyzed yield predictive and
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TABLE I
CLASSIFICATION PERFORMANCE ON BRANCH RETINAL VEIN OCCLUSION (BRVO) DATASET USING TOTAL RETINAL THICKNESS MAPS (M trt ) AND

GRADIENT MAGNITUDE (Mgm ) FEATURES, AS WELL AS CHANGE OF VALUES RELATIVE TO BASELINE ∆M . VALUES IN BRACKETS ARE THE 95 %
CONFIDENCE INTERVALS (CIS).

Extra Trees Logistic Regression
# Months AuC Sensitivity Specificity AuC Sensitivity Specificity

M trt & Mgm 3 0.83 (0.81/0.85) 0.74 (0.51/0.89) 0.78 (0.66/0.86) 0.78 (0.75/0.80) 0.67 (0.44/0.84) 0.76 (0.64/0.85)

M trt & Mgm & ∆M 3 0.83 (0.81/0.85) 0.77 (0.54/0.91) 0.77 (0.65/0.86) 0.77 (0.73/0.79) 0.67 (0.44/0.84) 0.76 (0.64/0.85)

M trt 3 0.73 (0.70/0.76) 0.73 (0.50/0.89) 0.60 (0.48/0.71) 0.78 (0.75/0.80) 0.64 (0.41/0.82) 0.80 (0.68/0.88)

M trt & ∆M 3 0.81 (0.78/0.83) 0.73 (0.50/0.88) 0.80 (0.68/0.88) 0.78 (0.76/0.80) 0.63 (0.41/0.82) 0.80 (0.68/0.88)

M trt & Mgm 2 0.79 (0.77/0.82) 0.72 (0.49/0.88) 0.75 (0.63/0.84) 0.73 (0.70/0.75) 0.60 (0.38/0.80) 0.76 (0.65/0.85)

M trt & Mgm & ∆M 2 0.80 (0.77/0.82) 0.72 (0.49/0.88) 0.74 (0.62/0.83) 0.78 (0.75/0.80) 0.65 (0.42/0.83) 0.77 (0.65/0.86)

M trt 2 0.78 (0.75/0.80) 0.60 (0.38/0.79) 0.82 (0.70/0.89) 0.76 (0.72/0.77) 0.62 (0.39/0.81) 0.79 (0.67/0.87)

M trt & ∆M 2 0.78 (0.75/0.80) 0.64 (0.41/0.82) 0.79 (0.67/0.87) 0.77 (0.74/0.79) 0.62 (0.39/0.81) 0.80 (0.68/0.88)

M trt & Mgm 1 0.80 (0.77/0.82) 0.74 (0.51/0.89) 0.75 (0.63/0.84) 0.75 (0.72/0.77) 0.65 (0.42/0.83) 0.75 (0.63/0.84)

M trt 1 0.76 (0.74/0.79) 0.62 (0.40/0.81) 0.76 (0.64/0.85) 0.74 (0.71/0.76) 0.62 (0.40/0.81) 0.77 (0.65/0.85)

TABLE II
CLASSIFICATION PERFORMANCE ON CENTRAL RETINAL VEIN OCCLUSION (CRVO) DATASET USING TOTAL RETINAL THICKNESS MAPS (M trt ) AND

GRADIENT MAGNITUDE (Mgm ) FEATURES, AS WELL AS CHANGE OF VALUES RELATIVE TO BASELINE ∆M . VALUES IN BRACKETS ARE THE 95 %
CONFIDENCE INTERVALS (CIS).

Extra Trees Logistic Regression
# Months AuC Sensitivity Specificity AuC Sensitivity Specificity

M trt & Mgm 3 0.75 (0.72/0.77) 0.61 (0.41/0.78) 0.80 (0.72/0.87) 0.71 (0.68/0.73) 0.54 (0.34/0.72) 0.80 (0.72/0.86)

M trt & Mgm & ∆M 3 0.75 (0.72/0.77) 0.62 (0.42/0.79) 0.79 (0.71/0.86) 0.72 (0.69/0.74) 0.51 (0.32/0.70) 0.82 (0.73/0.88)

M trt 3 0.76 (0.74/0.79) 0.63 (0.43/0.80) 0.81 (0.73/0.87) 0.77 (0.75/0.79) 0.63 (0.43/0.80) 0.81 (0.72/0.87)

M trt & ∆M 3 0.75 (0.73/0.78) 0.59 (0.39/0.76) 0.82 (0.74/0.88) 0.79 (0.77/0.81) 0.67 (0.47/0.83) 0.79 (0.71/0.86)

M trt & Mgm 2 0.73 (0.71/0.76) 0.59 (0.39/0.76) 0.79 (0.70/0.85) 0.70 (0.68/0.73) 0.53 (0.34/0.72) 0.81 (0.73/0.87)

M trt & Mgm & ∆M 2 0.74 (0.71/0.76) 0.62 (0.42/0.79) 0.76 (0.68/0.83) 0.74 (0.72/0.76) 0.52 (0.33/0.71) 0.82 (0.74/0.88)

M trt 2 0.74 (0.72/0.77) 0.61 (0.41/0.78) 0.79 (0.71/0.86) 0.77 (0.75/0.79) 0.62 (0.42/0.79) 0.79 (0.71/0.86)

M trt & ∆M 2 0.76 (0.73/0.78) 0.62 (0.42/0.79) 0.82 (0.74/0.88) 0.78 (0.75/0.80) 0.64 (0.44/0.81) 0.79 (0.71/0.86)

M trt & Mgm 1 0.76 (0.73/0.78) 0.61 (0.41/0.78) 0.80 (0.72/0.86) 0.77 (0.75/0.79) 0.56 (0.36/0.74) 0.83 (0.75/0.89)

M trt 1 0.77 (0.74/0.79) 0.63 (0.43/0.80) 0.84 (0.76/0.89) 0.78 (0.76/0.80) 0.66 (0.46/0.82) 0.79 (0.70/0.85)

interpretable results in terms of predictive signatures from the

initial treatment phase of 3 months.

1) Predictive signature maps: “Baseline only” already pro-

vided a high AuC in both diseases, and importantly, with a

slight increase when adding additional months. This can be

observed in the predictive signature maps as well, where the

λ = 1secv model selected features from baseline only because

these were the most predictive ones. This observation is

consistent with the findings of Rasmussen [15], who concluded

that not necessarily the model with the highest accuracy results

in the best interpretable model.

That the central total retinal thickness at baseline is an

important predictor, corresponds well with the literature [49]

for CRVO, where patients with a dry interval of more than 25

weeks at the last visit had a thinner central retinal thickness at

baseline, often a complete resolution of macular edema after

the first injection and were significantly younger. In addition,

thickness change relative to baseline ∆M got a high ranking,

which indicates that a faster thinning is beneficial for not

having recurrent edema. That central total retinal thickness

is also important in BRVO is a new and unexpected finding,

because edemas occur in BRVO in parafoveal and perifoveal

areas in contrast to CRVO where edemas are central. It seems

that if an edema extends over the foveal center the likelihood

of a recurrence after treatment is greater. Considering the

vascular anatomy of the central retina, the fovea itself is free

from blood vessels to allow complete transparency. Thus, a

foveal edema in BRVO may be a sign of a more severe leakage

activity which is not confined to the occluded vascular bed

itself but also spreads to adjacent, vessel-free retinal areas.

The ET model performed better than the logistic regression

model in BRVO. The reason can be observed in the predictive

feature map, where the ET model selected more regions for

prediction than the logistic regression model, in particular from

the M gm changes relative to baseline and the Mgm features

in the parafoveal nasal area.

2) Influence of hyper-parameters: In sparse logistic regres-

sion, the parameter ρ defines the ratio between L1 and L2.

As seen in Fig. 9a, decreasing ρ mainly caused an extension

around already selected sparse regions. Neighboring pixels

were strongly correlated because the retina is inherently locally

smooth and in addition a Gaussian filter was applied on

the thickness maps, As ridge regularization tends to assign

similar weights to strongly correlated features [16], a smaller ρ
value up-regulates L2, which forces additional local correlated

features to enter the model.

The parameter λ defines the general amount of regular-

ization. Setting λ according to the “one-standard error” rule,

led to less noisy feature relevance maps, highlighting only

highly predictive areas (Fig. 9a). Lowering the regularization

allowed other regions to enter the model. However, too little

regularization causes overfitting to data and may lead to

misinterpretation [15].

In the ET model, increasing mfeat resulted in sharper
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Fig. 7. (a) Predictive signature maps of M trt and Mgm for branch retinal
vein occlusion (BRVO) from baseline (BSL), month 1 and month 2 as well
as the change relative to BSL, ∆M . The following parameter sets were used
ρ = 0.1,λ = 1secv and λ = mincv ; ntrees = 5000, mfeat = 0.5. The
gray circle at the map center determines the fovea position. Note that logistic
regression selects M trt features at the fovea center at BSL and a small
parafoveal area at month 2, with relative low coefficient values. (b) Total
retinal thickness and gradient magnitude feature maps of examples from true
positive (TP), true negative (TN), false positive (FP) and false negative (FN)
cases, respectively.

predictive signature maps. As Geurts et al. [26] stated, in the

case of a high percentage of irrelevant features an increase in

mfeat leads to a better chance of filtering out these variables

and increases the probability of picking a feature with a

higher amount of information gain at each split, resulting in

a higher average information gain per split. Increasing the

parameter ntrees reduced the noise in the maps. Because the

total number of features is high and neighboring features are

highly correlated, having a small number of trees results in

a failure to select all predictive features, because in a split
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Fig. 8. (a) Predictive signature maps, M trt for central retinal vein occlusion
(CRVO) from the first 3 months and the change relative to baseline (BSL),
∆M . The following parameter sets were used ρ = 0.1,λ = 1secv and
λ = mincv ; ntrees = 5000, mfeat = 0.5. The gray circle at the map
center determines the fovea position. (b) Total retinal thickness feature maps
of examples from true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) cases, respectively.

only one of the predictive correlated features is chosen. With

a large number of trees, on average overall better performing

features have a higher chance of being selected in a split.

3) Limitations: A limitation of this study is that we only an-

alyzed imaging data, without considering other known factors

that influence outcome such as age and blood pressure [49].

Clinical data was not available for this study. However, ad-

ditional data can easily be incorporated into the model by

extending the feature vector by these additional covariates. A

further limitation of our models is that they cannot handle

missing visits and the visit intervals must be fixed. However,

outcome can be already predicted with a reasonable accuracy

having the baseline scan only. Finally, the proposed algorithms

are not capable of handling missing values at the borders

of the feature maps, which occur due to off-centered image

acquisitions. Though, as the predictive feature maps showed,

most of the predictive regions are located close to the fovea

center. Thus, a model based on a smaller field-of-view can be

created, where SD-OCT images needs to be less accurately

centered at the fovea.

4) Future work: Whereas we focused in this work on a

particular treatment outcome in a specific retinal disease using

total retinal thickness maps, the proposed methods could be

easily extended to predict other treatment outcomes such as

visual acuity in a broad spectrum of retinal diseases as for

instance AMD or diabetic retinopathy. Furthermore, signatures

identified in other pathologic structures segmented in the

images such as fluid compartments or observable changes in
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Fig. 9. Influence of the hyper-parameters ρ and λ on the regression coefficients w in logistic regression, as well as ntrees and mfeat on feature importance
f imp in extra trees (ET) models, where p is the total number of features. One of the parameters is fixed while the other is varied. The values mincv and
1secv are the λ values with the highest area under ROC curve (AuC) score respectively the most regularized version where the error is within 1 standard
error. Feature importance maps were smoothed with Gaussian σ = 1. In this illustration, predictive signature maps from branch retinal vein occlusion (BRVO)
Mgm baseline features are used. The gray circle at the map center determines the fovea position.

photoreceptor cells may improve the predictive power of the

models.

5) Conclusion: Our method shows potential for clinical ap-

plication in the care of patients with RVO and potentially other

indications. Findings based on the feature maps obtained may

serve as robust and clinically meaningful imaging biomarkers

applicable in physicians’ daily practice. Machine learning in

retinal imaging promises to introduce solid precision medicine

standards into the care of patients with retinal vascular disease,

one of the major vision-threatening diseases of modern times.
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