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PURPOSE. We develop a longitudinal statistical model describing best-corrected visual acuity
(BCVA) changes in anti-VEGF therapy in relation to imaging data, and predict the future BCVA
outcome for individual patients by combining population-wide trends and initial subject-
specific time points.

METHODS. Automatic segmentation algorithms were used to measure intraretinal (IRF) and
subretinal (SRF) fluid volume on monthly spectral-domain optical coherence tomography
scans of eyes with central retinal vein occlusion (CRVO) receiving standardized anti-VEGF
treatment. The trajectory of BCVA over time was modeled as a multivariable repeated-measure
mixed-effects regression model including fluid volumes as covariates. Subject-specific BCVA
trajectories and final treatment outcomes were predicted using a population-wide model and
individual observations from early follow-up.

RESULTS. A total of 193 eyes (one per patient, 12-month follow-up, 2420 visits) were analyzed.
The population-wide mixed model revealed that the impact of fluid on BCVA is highest for IRF
in the central millimeter around the fovea, with �31.17 letters/mm3 (95% confidence interval
[CI], �39.70 to �23.32), followed by SRF in the central millimeter, with �17.50 letters/mm3

(�31.17 to �4.60) and by IRF in the parafovea, with �2.87 letters/mm3 (�4.71 to �0.44).
The influence of SRF in the parafoveal area was �1.24 letters/mm3 (�3.37–1.05). The
conditional R

2 of the model, including subject-specific deviations, was 0.887. The marginal R
2

considering the population-wide trend and fluid changes was 0.109. BCVA at 1 year could be
predicted for an individual patient after three visits with a mean absolute error of six letters
and a predicted R

2 of 0.658 using imaging information.

CONCLUSIONS. The mixed-effects model revealed that retinal fluid volumes and population-wide
trend only explains a small proportion of the variation in BCVA. Individual BCVA outcomes
after 1 year could be predicted from initial BCVA and fluid measurements combined with the
population-wide model. Accounting for fluid in the predictive model increased prediction
accuracy.

Keywords: statistical machine learning, anti-VEGF therapy, image analysis, optical coherence
tomography, intraretinal fluid, subretinal fluid

Intravitreal anti-VEGF therapy is the standard of care for a
range of exudative macular diseases, including neovascular

age-related macular degeneration and macular edema second-
ary to diabetic retinopathy and retinal vein occlusions.1 In
clinical practice, the functional response to anti-VEGF treat-
ment is markedly heterogeneous and ranges from substantial
vision gains with subsequent stability, to loss of vision despite
aggressive therapy.2 The individual functional potential to
respond to VEGF inhibition is determined by several factors,
including baseline visual acuity (VA) and variables obtained by
high-resolution imaging such as optical coherence tomography
(OCT).3 While some changes observed within the retina are
amenable to treatment (such as exudative fluid), others may
become permanent despite therapeutic intervention (e.g.,

photoreceptor damage).3 However, the extent of each factor’s
contribution is unclear and the interplay between imaging
biomarkers, visual function, and treatment response remains
poorly understood. Conventional statistical methods reporting
outcomes (e.g., mean change in best-corrected visual acuity
[BCVA]) cannot describe the longitudinal trajectories of visual
function or the relation between vision and retinal morphology.

Longitudinal analysis enables individual development trajec-
tories as well as the population-wide normative development to
be captured and modeled.4 In this study, we integrated
longitudinal clinical and imaging data to model the influence
of pathologic changes in the retina on the clinical outcome
variable and to predict individual future therapeutic outcomes
based on the current state. We demonstrated our method on
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automatically segmented OCT characteristics and BCVA letter
score as a clinical variable in a large population of patients with
macular edema secondary to central retinal vein occlusion
(CRVO) receiving anti-VEGF therapy (Fig. 1). We assumed that
the individual VA and its development during therapy are
affected by two major factors: reversible damage from which
the retina recovers over time (where fluid in the retina is the
major contributor) and irreversible damage. Hence, we
modeled the population-wide temporal BCVA trajectory as a
function of time and retinal fluid. By introducing random
effects into the model, we accounted for the subject-specific
deviation from the population-wide BCVA trajectory due to
variation in reversible and irreversible damage as well as speed
of recovery. We demonstrated that the combination of imaging
and clinical data allows accurate modeling as well as prediction
of treatment outcomes.

PATIENTS AND METHODS

Patient Population and Study Procedures

This was post hoc analysis of a comprehensive prospective
clinical trial database. Anonymized spectral-domain (SD)-OCT
images and clinical data of patients enrolled in the CRYSTAL
study (clinicaltrials.gov identifier: NCT01535261), available at
the Vienna Reading Center (Vienna, Austria), were included.
The trial’s main outcome measures, inclusion and exclusion
criteria, and its imaging and BCVA assessment procedures of
the CRYSTAL trial have been reported.5 Therefore, only

procedures immediately relevant to the current analysis are
described herein. The study was conducted in compliance
with the Declaration of Helsinki and all participants provided
written informed consent before inclusion. Approval was
obtained from the ethics committee at the Medical University
of Vienna and each study site participating in the CRYSTAL
trial.

Inclusion/Exclusion Criteria, Treatment and
Imaging

Patients, one eye from each, with a complete monthly follow-
up, available from baseline to month 12, for whom automatic
segmentations of retinal fluid were available (n¼193, 13 visits)
were included in our retrospective analysis of the prospective
study. All patients underwent standardized SD-OCT imaging by
Cirrus HD-OCT (n ¼ 58; Carl Zeiss Meditec, Dublin, CA, USA)
and Spectralis OCT (n ¼ 135; Heidelberg Engineering,
Dossenheim, Germany) at monthly visits by certified operators.
A 6 3 6 mm macular cube scan pattern with a resolution of 200
3 200 for Cirrus and 512 3 49 for Spectralis was used. A total of
89 scans that failed preprocessing steps described below due
to poor image quality were removed from the analysis (see Fig.
2 for examples). Overall, 2420 scans were analyzed.

BCVA was measured at each monthly visit based on early
treatment diabetic retinopathy study (ETDRS) charts by
certified examiners. Patients were treated with 0.5-mg monthly
ranibizumab injections (minimum of 3 injections) until stable
BCVA was maintained for 3 consecutive months. Thereafter,

FIGURE 1. (A) Visits of an example study patient over 1 year. The top rows contain en face maps of automatically segmented intraretinal and
subretinal fluid volumes. The bottom row shows the corresponding BCVA score measured in letters. Note the drop in BCVA score when fluid
recurs. (B) BCVA trajectories of the whole study population, where each blue line represents one patient. Trajectories for four exemplary patients
are highlighted to illustrate the variation in the data caused by different disease states at first visit, varying speed of BCVA recovery and temporary
drops in BCVA caused by recurring fluid.

FIGURE 2. Four examples of SD-OCT scans that were excluded from analysis due to failures in preprocessing caused by poor image quality. Note the
severe swelling of the neurosensory retina that precludes visualization of the retinal pigment epithelium layer. Top left scan was acquired from
Spectralis OCT, and the other scans from Cirrus HD-OCT.
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0.5 mg ranibizumab was injected as needed if monthly
monitoring indicated a loss of VA resulting from disease
activity.

Image Preprocessing

We compensated for variations in anatomy, scanning positions,
and scanning resolutions by transforming the SD-OCT scans
into a fovea-centered joint coordinate system as described.6

First, follow-up patient scans were aligned rigidly to match the
segmented vessel structures of the two images. Interpatient
affine registration was obtained by aligning the center of the
retina (fovea) and optic nerve head (ONH) center within
patients (Fig. 3A).

Intraretinal fluid (IRF) and subretinal fluid (SRF) were
automatically segmented in the SD-OCT images by classifying
voxels as being background, IRF, or SRF using a convolutional
neural network as reported7 (Fig. 3B). The segmentations were
transformed in the joint coordinate system and the total
volume of IRF and SRF was computed within the central 1 mm
region around the fovea and parafoveal region in the 1- to 3-
mm radius ring (Fig. 3C). In the following, we denote the
amount of foveal fluid volume measured as vfov�irf and vfov�srf

and the volume in the 1- to 3-mm parafoveal region as vpara�irf

and vpara�srf , respectively.

Population-Wide BCVA Development Model

We modeled the development of BCVA over time as a repeated
measure mixed-effects regression model (MRM)8 with a
quadratic growth term. BCVA was the outcome variable, time
and fluid volume covariates were fixed effects, and individu-

ally varying intercept and slope were modeled as random
effects. The BCVA value of a single visit j for a patient i at time
t then is:

bcvaij ¼ b0 þ b1 3 tij þ b2 3 t2
ij þ b3 3 v

fov�irf
ij þ b4 3 v

fov�srf
ij

þ b5 3 v
para�irf
ij þ b6 3 v

para�srf
ij þ b0i þ b1i 3 tij þ eij

ð1Þ
The coefficients b weights the fixed-effects covariates, b0 to b2

are the mean intercept and slope coefficients and b3 to b6 are
the coefficients modeling the influence the fluid in the various
sections has on the outcome variable. The random coefficients
b0i and b1i are the subject-specific weights modeling the
deviation from the general trend in terms of intercept and
slope. e accounts for the model error.

From the general formula we derived four nested models to
quantify the benefit of having imaging data in the model and
the necessity of the quadratic growth term. The full model,
Mquad;img, contains the fluid volume and the quadratic growth
term as specified in Equation 1. In the nested modelMimg, we
dropped the quadratic term resulting in a linear growth model.
By dropping the fluid volume terms, we obtained the models
Mquad;noImg with quadratic growth and MnoImg with linear
growth.

By using the vector and matrix notation, we can formulate
Equation 1 for a series of visits of N patients as:8

yi ¼ Xibþ Zibi þ ei; i ¼ 1; . . . ;N ð2Þ
where yi is a ni 3 1 vector containing the BCVA values
observed, and ni is the number of visits for patient i. Xi is a
ni 3 P design matrix containing P fixed effects (intercept,

FIGURE 3. Preprocessing steps to obtain fluid volume in foveal and parafoveal regions. (A) Follow-up scans from a patient are aligned using the
vessel structure. Scans between patients are registered by aligning the foveal center and ONH center. (B) Automatic segmentation of IRF and SRF
fluid, from which en face projections of the fluid compartments are generated. (C) The fluid maps are transformed using the alignment of
interpatient registration, followed by computation of the total fluid volume in the central mm (vfov�irf , vfov�srf ) and in the parafoveal region in-
between the 1- and 3-mm radius (vpara�irf , vpara�srf ).
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time, time2, fluid volumes) as columns, and visits as rows. The
coefficients of the fixed effects are subsumized in the P 3 1
vector b. The random effects matrix Zi of size ni 3 2 contains
the intercept and time variables as columns, weighted by the
two-element vector bi. Finally, ei is the ni 3 1 measurement
error.

To do inference on the model, we assumed a Gaussian
normal distribution of the model error eij ;Nð0; r2Þ and
multivariate Gaussian distribution of the random effects
bi ;Nð0;RÞ, with R being the 2 3 2 covariance matrix of
the random effects, where bi and ei are independent from
each other. The parameter r can be interpreted as variance in
the data within a patient and R as covariance between
patients. The outcome variable has then a marginal distribu-
tion of yi ;ðXib;ViÞ, with the marginal covariance matrix
Vi ¼ covðZibiÞ þ covðeiÞ ¼ ZiRZi þ r2I . The expected value
for yi is the so-called marginal mean EðyiÞ ¼ Xib, containing
the fixed effects only. Therefore, the coefficients b can be
interpreted as the population-wide mean response, similar to
coefficient interpretation in linear regression.

Estimates of the fixed-effects, b̂, and (co-)variance struc-
tures, r̂ and R̂, are obtained either by maximum likelihood
(ML), or restricted maximum likelihood (REML),9 where ML is
known to produce biased estimates. On the other hand, doing
likelihood-based model comparisons does not provide mean-
ingful results for REML models with different fixed effects
structures.10 Thus, in our work we used the ML estimates for
likelihood-based model selection and comparison only, and the
REML estimates otherwise.

Prediction of Individual BCVA Outcomes

Whereas the model allows to estimate the population-wide
mean effects, such as effect of fluid volume on BCVA in terms
of fixed effects, b, we used it additionally to predict individual
future BCVA development and outcome by estimating the
subject-specific random effects, bi, from initial visits (e.g., the
first 3 months) in combination with population estimates b̂, r̂
and R̂. The subject-specific random effects, bi, were estimated
using the empirical best linear unbiased predictor (EBLUP):11

b̂iðR̂; r̂; b̂Þ ¼ R̂ZT
i V̂�1

i ðyi � Xib̂Þ ð3Þ

where yi and Xi contained the individual BCVA and fluid values
from the already observed time points, and the fixed-effects
and covariance coefficients from the marginal model, b̂, r̂ and
R̂, were learned beforehand from a training dataset. By using
the estimated b̂i in Equation 1, we can predict the BCVA for
any given time-point t and, thus, construct continuous
trajectories of BCVA development under treatment. In partic-
ular, it allows us to extrapolate BCVA trajectories based on past
observations into predictions of the future. Furthermore,
additionally observed time points, that is, from a follow-up
visit, can be incorporated by recomputing Equations 3 and 1,
resulting in a refined prediction of the random effects and the
trajectory.

To predict BCVA for a future time-point, we must estimate
the approximate IRF and SRF fluid amount at that time-point
for the models Mimg and Mquad;img, as vfov�irf , vfov�srf ,
vpara�irf and vpara�srf are coefficients these models. Thus, we
used a second growth MRM to predict the future subject-
specific fluid development, v̂, analogous to the previously
described BCVA prediction. However, the fluid development
generally is not linear, as recurrence of an edema causes peaks
in the trajectory and the range of fluid volume is large.
Therefore, we applied a median filter on the volumes measured
for a patient to remove the peaks, where the median volume, �v,
for a patient i and time-point j is: �vij ¼ medianðvij�1; vij; vijþ1Þ.

The MRM for fluid development is modeled on a logarithmic
scale:

logð�vijÞ ¼ b7 þ b8 3 tij þ b2i þ b3i 3 tij þ �ij ð4Þ

Similar to BCVA, we estimated the fluid trajectories for a
patient by estimating the fixed-effects coefficients (intercept
and slope) and covariances of Equation 4 from the population
first, and then the subject-specific random coefficients from
the given initial time points using Equation 2. With the
estimated fixed and random-effects coefficients, we predicted
fluid volume for any time-point t using Equation 4, and finally
the BCVA using the predicted volumes in Equation 1.

Subject-specific prediction intervals, which are the intervals
where a future BCVA value will fall with a certain probability,
can be approximated using Monte Carlo simulation by
sampling from the distributions of the estimated fixed-effects
coefficients, random effects and residual error:12,13

b ;N b;
XN

i¼1

XT
i V�1

i Xi

" #�1 !
;

bi ;N bi;R� RZT
i V�1

i ZiR
� �

; e ;N 0; rð Þ ð5Þ

New trajectories are created from the coefficients sampled by
using them in Equation 1. The a prediction interval for a given
time-point tij is then the interval between the a=2 and 1� a=2
percentiles of the trajectory values at the time-point. We
computed the interval using 1000 samples.

Statistical Evaluation

The evaluation of the proposed models is divided into two
parts, with the first part covering the general model fit
including the population-wide mean response and the second
part covering the predictive power of the model in terms of
predicting future BCVA development for new patients.

All four models were fitted on the whole dataset using the
package lme49 from the statistics software R. We used the EM
estimate to compare the models.Mquad;img has been compared
to the other nested models Mimg, Mquad;noImg and MnoImg

using a likelihood ratio test on variance components with
Satterthwaite’s estimation of degrees of freedom14 and the
Akaike information criterion (AIC).15 As a goodness-of-fit
measure, we used the coefficient of determination (R2) for
MRMs,16,17 which is divided into the marginal R

2 that describes
the proportion of variance explained by the fixed factors only
and the conditional R

2 that considers fixed and random effects,
thus measuring the variation explained by all effects. The
coefficients were determined using REML for the final estimates.
T-statistics and P values were calculated based on Satterthwaite’s
approximations and 95% confidence intervals (CIs) were
obtained by bootstrap sampling with 500 simulations.

We evaluated the prediction performance of the model in
terms of predictability of the VA after 1 year of treatment using
a 5-fold cross-validation setup on a patient level. As perfor-
mance measures, we computed the predicted R

2, which
measures how well unseen samples are likely to be predicted
by the model, and the mean absolute error (MAE) from the
observed and predicted BCVA values. Because patients may
suffer from recurring fluid at month 12 causing a drop in the
VA, we used the median BCVA from months 10 to 12 as the
prediction target to obtain a more reliable treatment outcome
variable that is less affected by temporary events. Trajectories
for each patient in the test-sets were predicted as described in
Section 2.3 by first estimating the model parameters b̂, r̂ and R̂
from the whole time series of training-set patients, followed by
the prediction of random intercept and slope coefficients b̂i

from data of the given patient time points using Equation 3.
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BCVA at a specific future time-point then was predicted using
Equation 1. We evaluated how well the model adapts to new
data of increasing number of visits by successively increasing
the number of time points available for estimating the random
coefficients. The MAE of all four models was compared for
their significant difference using a one-sided Diebold-Mariano
(DM) test18,19 with the alternative hypothesis that the
prediction results of the nested model is less accurate than
the full model in terms of MAE.

RESULTS

Model Comparisons and Coefficient Estimations

Comparison results of Mquad;img, Mimg, Mquad;noImg and
MnoImg are provided in Table 1, where best values are
represented by bold numbers. Reduction in the AIC values,
significance in the likelihood-ratio test, and an increase in the
marginal and conditional R

2 indicate that adding fluid volume
improves the general model fit. The conditional R

2 of 0.887
indicates a general good model fit. Most of the variance is
covered by the subject-specific random intercept and slope,
while a marginal R

2 of 0.109 shows that only a rather small
proportion of the variance in the data is explained by the fixed
effects (intercept, slopes, and fluid volumes).

As seen in Figure 4, MnoImg was able to model the general
trend of BCVA development under treatment but failed to model
the temporary deviations in BCVA caused by recurring fluid in
the retina. Furthermore, the large amount of fluid present in
almost all patients at baseline associated with a lower BCVA at
that time-point caused a bias by underestimating BCVA in early
months, as observed in the individual estimates (Fig. 4).

As summarized in Table 2, all fixed-effects coefficients were
significant in the full model, except vpara�srf . The mean
estimates of fluid coefficients indicate that an increase in IRF
causes a higher drop in BCVA than increasing SRF and that the
influence of foveal fluid on BCVA is in an order of magnitude
higher than the parafoveal fluid influencing BCVA. For instance,
the median amount of vfov�irf at baseline is 0.170 mm3, which
causes a drop of 5.30 letters, whereas the median vpara�irf of
0.480 mm3 causes a drop of 1.38 letters. Similarly, the baseline
median vfov�srf of 0.056 mm3 results in a drop of 0.98 letters and
vpara�srf of 0.135 mm3 reduces BCVA by 0.17 letters.

Prediction of Individual BCVA Outcomes

We evaluated the prediction performance as described in the
Methods section for all four models. We successively
increased the number of visits available for prediction for

TABLE 1. Comparison of Models

Model AIC

P Value

Likelihood-Ratio Test

R2 Marginal/

Conditional

Mquad;img 15,968 0.108/0.887

Mimg 16,060 <0.0001 0.107/0.881

Mquad;noImg 16,815 <0.0001 0.036/0.846

MnoImg 17,029 <0.0001 0.022/0.827

In the likelihood-ratio test, all models were compared with the full
model Mquad;img. Best values are represented by bold numbers.

FIGURE 4. BCVA trajectories (blue) measured in four patients and the corresponding subject-specific model fits. Spikes in the BCVA trajectory are
caused by recurring fluid. Note that the imaging-based models Mquad;img and Mimg are able to model these spikes, resulting in a general better
model fit.

TABLE 2. Estimated Coefficients of the Full Model Mquad;img

Parameter Estimate 95% CIs P Value

Intercept 65.81 63.86 to 67.65 <0.0001

Time, per day 0.049 0.041 to 0.058 <0.0001

Time2, per day �9.42 3 10�5 �1.12 3 10�4 to

�7.56 3 10�5

<0.0001

vfov�irf , per 1 mm3 �31.17 �39.70 to �23.32 <0.0001

vfov�srf , per 1 mm3 �17.50 �31.17 to �4.60 0.008

vpara�irf , per 1 mm3 �2.87 �4.71 to �0.44 0.006

vpara�srf , per 1 mm3 �1.24 �3.37 to 1.05 0.241
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each patient in the test fold of the cross-validation setup to
evaluate how the prediction accuracy adapts to the refined
prediction models. All the results are listed in Table 3, and a
summary of MAE and predicted R

2 is given in Figure 5.
Furthermore, we exemplarily visualize the individual BCVA
trajectories and prediction intervals for four patients in Figure
6, where the four models are compared in Figures 6A and 6B.
How the predicted trajectory adapts to an increasing number
of time points available for prediction is shown in Figures 6C
and 6D.

DISCUSSION

In this study, we proposed a framework to model VA outcomes
for patients receiving treatment as an MRM incorporating
longitudinal clinical data of measured VA and structural SD-
OCT data of automatically segmented intraretinal and subret-
inal fluid. We demonstrated that the marginal part of the MRM
is able to model BCVA on a normative population level and the
subject-specific conditional part is able to account for
variations in retinal anatomy and different individual response
patterns. Furthermore, we demonstrate the model can predict
the future VA of individual patients receiving treatment by
assuming that the individual trajectories can be predicted from

early time points and the population-wide model. By account-
ing for the fluid changes due to treatment and recurrence we
can predict the BCVA outcome more precisely. This enables
the separation of temporary fluid induced fluctuations in
BCVA, and the development of BCVA more relevant for long-
time outcome.

Analyzing longitudinal studies is a challenging task. Follow-
up observations are correlated and data often are unbalanced
due to missing time points and nonuniform visit intervals.
Furthermore, the intersubject variability in the disease state at
the first visit and diverging responses to treatment must be
considered. MRMs on longitudinal data20 provide a rich
statistical framework for approaching these issues. The linear
relations between a univariate longitudinal measurement and
time points of observations as well as population-wide and
individual effects can be modeled by using the particular
random slope and intercept model proposed by Laird and
Ware.8 Intersubject variability is accounted for by allowing
random deviations from the population-wide mean trajectory
on an individual patient level by incorporating random
intercepts and slopes. The superior statistical power of MRM
compared to alternative methods using longitudinal imaging
data of neurodegenerative diseases has been demonstrated.21

Furthermore, MRM models have been shown to be capable of

TABLE 3. End-Point BCVA Prediction Performance in Terms of MAE of Letters and Predicted R
2, Using an Increasing Number of Time Points

(Months) in a 5-Fold Cross-Validation Setup for the Four Models

Months

Mquad;img Mimg Mquad;noImg MnoImg

MAE STD R2 MAE STD R2 DM P Value MAE STD R2 DM P Value MAE STD R2 DM P Value

1 9.358 8.362 0.290 9.491 8.479 0.269 0.020 9.851 7.682 0.296 0.084 10.292 7.797 0.248 0.010

2 7.218 7.446 0.515 7.222 7.563 0.507 0.476 7.335 7.310 0.516 0.299 7.284 7.417 0.513 0.391

3 6.008 6.310 0.658 6.124 6.438 0.644 0.045 6.223 6.383 0.642 0.107 6.263 6.463 0.635 0.068

4 5.895 6.021 0.680 6.046 6.174 0.663 0.052 6.128 6.349 0.649 0.072 6.321 6.419 0.634 0.007

5 5.840 5.452 0.712 6.131 5.718 0.683 0.012 5.885 5.561 0.704 0.408 6.049 5.791 0.684 0.139

6 5.472 5.046 0.750 5.845 5.308 0.719 0.010 5.454 5.175 0.745 0.537 5.707 5.315 0.726 0.130

7 4.982 4.985 0.776 5.450 5.151 0.746 0.004 5.223 5.027 0.763 0.094 5.492 5.207 0.742 0.017

8 4.815 4.653 0.798 5.298 5.014 0.760 0.004 4.948 4.646 0.792 0.230 5.341 4.820 0.767 0.011

9 4.145 4.521 0.830 4.601 4.786 0.801 0.006 4.597 4.688 0.806 0.005 4.826 4.735 0.794 0.001

10 3.735 4.233 0.856 4.141 4.522 0.830 0.006 4.222 4.449 0.830 0.002 4.248 4.491 0.828 0.002

11 3.094 3.426 0.904 3.472 3.810 0.880 0.003 3.533 3.469 0.889 0.004 3.508 3.616 0.886 0.002

12 2.580 2.794 0.935 2.933 3.055 0.919 0.001 3.039 2.892 0.921 0.001 2.911 2.915 0.923 0.003

13 2.197 2.323 0.954 2.480 2.476 0.945 <0.001 2.613 2.473 0.942 0.001 2.459 2.420 0.946 0.008

P values are from a one-sided Diebold-Mariano (DM) test comparing the given model with the full model, Mquad;img. STD, standard deviation.
Best values at each month are represented by bold numbers.

FIGURE 5. Prediction performance of end-point BCVA for the four models using an increasing number of visits (Months). Left: MAE in letters
between observed and predicted BCVA. Right: Predicted R

2.
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predicting the future development of early infant brain
maturation by estimating the growth trajectories from magnet-
ic resonance diffusion tensor images.13 In previous work,6 we
used SD-OCT data combined with sparse logistic regression to
predict disease recurrence from early time-point observations.
However, this method is limited to balanced data without
missing time points.

In the current study using MRM, we found that intraretinal
and subretinal fluid volume explains only a rather small
fraction of the BCVA variance in the population (marginal R

2¼
0.1), and foveal fluid and IRF have more influence on VA than
parafoveal fluid and SRF. Thus, effects other than fluid cause a
large fraction of vision. We subsumed these effects in the
random effects that models baseline irreversible damage as
subject-specific intercept deviation and reversible damage as
subject-specific slope deviation. Note that we model only the
immediate effects of fluid on BCVA explicitly, and not the

secondary effects caused by fluid, such as damage to
photoreceptor cells22,23 or conductive elements of the retina.24

Even though the impact of fluid on VA is limited, by
incorporating it we are able to model rapid changes in VA
caused by fluid resorption after anti-VEGF injections and
recurring fluid. Without accounting for fluid, the models tend
to underestimate BCVA at early time points and overestimate
the slope or treatment response because the low baseline
BCVA caused by a large amount of fluid present pulls down the
trajectory of the model (Figs. 4, 6A). The prediction interval,
not to be confused with confidence interval of the trajectory, is
smaller for models accounting for fluid (Fig. 6B). This results
from the lower variance of the residuals because the spiky
changes in the trajectory are modeled by fluid coefficients.
However, the interpretation of prediction intervals differs
between nonfluid and fluid models. In the first case, it shows
the interval where the future BCVA probably is lying, including

FIGURE 6. Predicted BCVA trajectories for four patients. (A) Comparison of trajectories from the four models with six time points available for
prediction (BCVA obs.). (B) 95% prediction intervals forMquad;img andMquad;noImg. (C) Illustration of how the BCVA trajectory is refined with an
increasing number of time points available. Trajectory has been gained from the full model,Mquad;img. (D) 95% prediction intervals having four and
10 time points for the full model.
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the large deviations caused by recurring fluid, whereas in the
second it shows the interval of future BCVA without short-term
interruptions.

Predicting final VA outcomes from baseline only showed
lower accuracy with a mean error of 69 letters, because the
individual slope cannot be estimated from a single time-point
and the population-wide trend must be used. Predicting the
outcomes with 3 months available showed a mean error of 66
letters. After the initial phase, the gain in prediction accuracy
when incorporating additional visits was not as high as in the
first 3 months, which reflects the fact that many patients
reached a near-final BCVA response after the loading dose.
However, the prediction interval became narrower with
additional time points (Fig. 6D) and the model adapted to
cases where the patient did not fully recover from a recurrence
(e.g., Subject 3, Fig. 6C).

While we only considered fluid segmented in SD-OCT
images as an influence on VA and treat other effects as random,
this model could be extended easily to measure the effects of
any other (pathologic) structure observed in SD-OCT images,
such as damage to photoreceptor cells, integrity of the
ellipsoid zone and external limiting membrane, disorganization
of retinal inner layers (DRIL),25 and other biomarkers that may
be quantified in the future. The limited explanatory value of
the fluid parameters on VA emphasizes the necessity of
incorporating additional possible biomarkers. The proposed
model has the capability to assess and quantify the influence of
these biomarkers on VA similarly to the fluid model, by
marginal/conditional R

2, and coefficient effect size and
significance, and ultimately it may help to obtain additional
insights in the disease, its progression, and outcome. Moreover,
the specific effects of different pharmacologic agents or other
treatments may be compared efficiently. The prediction model
also could be applied to other diseases, such as diabetic
maculopathy or age-related macular degeneration.

This study has several limitations. The model can predict
long-term trends but not short-term events, such as recurring
fluid. A data subset from the CRYSTAL study was used with
complete follow-ups, which may be a source of bias. Another
possible source of bias is that SD-OCT image quality tends to be
low for patients with large amounts of fluid and/or poor vision.
Segmentation of fluid is difficult or even impossible on such
scans and they are more likely to be excluded from the
analysis. However, we only had to remove single low-quality
scans and not a whole patient time-series, as MRMs are capable
to handle unbalanced data.

In conclusion, we demonstrated that MRM can be adapted
to create a longitudinal disease model by combining clinical
and imaging variables, determine the influence of fluid on
visual function from the population-wide model, and deter-
mine the treatment outcome after 1 year by predicting
individual trajectories from the pooled population-wide model
and early time points.
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