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In this pilot study, we evaluated the potential of computational image analysis of optical coherence
tomography (OCT) data to determine the prognosis of patients with diabetic macular edema (DME).
Spectral-domain OCT scans with fully automated retinal layer segmentation and segmentation of
intraretinal cystoid fluid (IRC) and subretinal fluid of 629 patients receiving anti-vascular endothelial
growth factor therapy for DME in a randomized prospective clinical trial were analyzed. The results were
used to define 312 potentially predictive features at three timepoints (baseline, weeks 12 and 24) for
best-corrected visual acuity (BCVA) at baseline and after one year used in a random forest prediction
path. Preliminarily, IRC in the outer nuclear layer in the 3-mm area around the fovea seemed to have
the greatest predictive value for BCVA at baseline, and IRC and the total retinal thickness in the 3-mm
area at weeks 12 and 24 for BCVA after one year. The overall model accuracy was R2 = 0.21/0.23
(p < 0.001). The outcomes of this pilot analysis highlight the great potential of the proposed machine-
learning approach for large-scale image data analysis in DME and other retinal diseases.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Imaging has become a major determinant in ophthalmology
since fundus photographywas introduced to the community. Many
multimodal imaging techniques including optical coherence
tomography (OCT), fluorescein angiography, autofluorescence
imaging and OCT angiography are currently available to the clini-
cian. On the one hand, this enables ophthalmologists to gain
detailed insights into human tissue on a microscopic resolution
level; on the other hand, the available data cannot bemanually ana-
lyzed in depth during clinical routine because the amount of data
by far exceeds the capacity of healthcare providers. Furthermore,
the amount of data is set to escalate as life expectancy is rising
and age-related diseases are increasingly seen in ophthalmology.

Many retinal diseases compromise vision. There have been
great efforts over the last decade to identify morphological
biomarkers for the definition of permanent and/or reversible vision
loss and for disease and/or visual acuity prediction (Garvin et al.,
2008; Kapetanakis et al., 2015; Shen, Liu, & Xu, 2016; Wong &
Bressler, 2016). It has been shown that intraretinal cystoid fluid
(IRC) on OCT is important for prognosis of neovascular age-
related macular degeneration (AMD) therapy Kapetanakis et al.,
2015, a pigment epithelial detachment followed by IRC indicates
a poor visual acuity prognosis for patients with AMD (Wong &
Bressler, 2016) and patients with diabetic macular edema (DME)
with subretinal fluid (SRF) are more likely than patients without
SRF to gain vision under therapy (Shen et al., 2016).

Some of these biomarkers have been proven, others still need to
be validated in larger prospective clinical trials. Most importantly,
manual evaluation of these biomarkers, even in an ophthalmic
reading center setting, is usually tedious and the enormous scale
of imaging data provided exceeds capacities. Therefore, automati-
zation of image data evaluation is the future in ophthalmology,
as can be seen by the large number of publications in this field,
for example, on the automated segmentation in OCT (Abramoff
et al., 2016; Chen et al., 2012; Sophie, Lu, & Campochiaro, 2015;
Yohannan et al., 2013) or automated detection of signs of diabetic
retinopathy in color fundus photography (Gerendas et al., 2014;
Ritter et al., 2014; Schlegl, Waldstein, Vogl, Schmidt-Erfurth, &
Langs, 2015; Schmidt-Erfurth, Waldstein, Deak, Kundi, & Simader,
2015). Many of these studies used computational methods in the
field of deep learning (Abramoff et al., 2016; Ritter et al., 2014;
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Table 1
Overview of segmentation features, feature timepoints and feature regions compris-
ing together 312 potential features for prediction.

Segmentation features Timepoints Regions

Total retinal thickness Baseline Foveal central 1 mm
Inner retina thickness Week 12 Parafoveal 3-mm ring
Outer nuclear layer thickness Week 24 3-mm circle
Outer retina thickness Perifoveal 6-mm ring
Area of intraretinal cystoid fluid 6-mm circle
Volume of intraretinal cystoid

fluid
Parafoveal nasal 3 mm

Area of subretinal fluid Parafoveal superior 3 mm
Volume of subretinal fluid Parafoveal temporal

3 mm
Parafoveal inferior 3 mm
Perifoveal nasal 6 mm

TOTAL: 8 � 3 � 13 = 312
FEATURES

Perifoveal superior 6 mm

Perifoveal temporal 6 mm
Perifoveal inferior 6 mm

8 3 13
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Schlegl et al., 2015), which is described to ‘‘truly represent the
brave new world in medicine” (Gerendas et al., 2014). Our study
combined computational methods for the segmentation of certain
features in OCT images and a random forest regression model for
prediction purposes.

The aim of this pilot study was to apply a machine-learning
approach to investigate the role of prognostic morphological
biomarkers from imaging in a large dataset of eyes with DME.
Knowledge of the role will help to find where adaptions and
fine-tuning of such an existing machine-learning pipeline are
needed to apply it to large-scale DME data.

2. Materials and methods

This study was a post hoc analysis of the one-year data from the
Diabetic Retinopathy Clinical Research Network (DRCR.net) Proto-
col T study (identifier at clinicaltrials.gov: NCT01627249). All avail-
able spectral-domain (SD)-OCT scans from monthly visits were
included in the analysis data set. The data set comprised 629
patients and best-corrected visual acuity (BCVA) at baseline and
one year was included for preliminary correlation purposes. Imag-
ing and functional data were prospectively collected. The main
objective of the trial was to compare different intravitreal treat-
ment options for patients with DME. The results have been pub-
lished elsewhere (Schmidt-Erfurth et al., 2016). The study was
conducted in compliance with the Declaration of Helsinki. Our post
hoc analysis was approved by the Ethics Committee of the Medical
University of Vienna. Written informed consent for inclusion into
the Protocol T trial was given by each study participant.

2.1. Automated image analysis

A fully automated computational image analysis pipeline was
used to process SD-OCT images. A publicly available automated
segmentation algorithm based on graph theory (Iowa Reference
Algorithms) was used to delineate retinal layers (Shin, Lee,
Chung, & Kim, 2012). As the layer segmentation algorithm was
developed for healthy retinas, only some layer interfaces were reli-
ably segmented in DME patients. Thus, we divided the retina into
three main layers representing the inner retina (IR: from inner lim-
iting membrane to outer nuclear layer), the outer nuclear layer
(ONL), and the outer retina (OR: from outer nuclear layer to retinal
pigment epithelium). A voxel segmentation method based on deep
learning was applied to delineate the DME-associated exudates,
i.e., IRC and SRF (Abramoff et al., 2016). Examples of the segmenta-
tions of the layers obtained, if all were segmented separately, and
the corresponding exudates are shown in Fig. 1. The segmentations
led to 8 segmentation features (Table 1). Fig. 2 gives an example of
Fig. 1. Examples of the segmentations of the layers obtained (left), if all segmented w
shown in red, subretinal fluid is shown in blue. For this study, only white and green
membrane and the white surface was used as the inner retina (IR), between the white and
to Bruch’s membrane as the outer retina (OR).
how the thickness maps of a single case could look like if the seg-
mentations were applied at all timepoints. Due to limitations in
computational power, only baseline, week 12 and week 24 were
chosen for analysis, resulting in three feature timepoints (Table 1).

2.2. Feature extraction and predictive modeling

A summary of the retinal structure as a series of features was
obtained by spatially dividing the macular retina into nine areas
according to the Early Treatment Diabetic Retinopathy Study
(ETDRS) grid. The mean layer thicknesses together with the area
and volume of IRC and SRF were computed for each cell of the
ETDRS grid. The cells included were from the foveal area (central
1 mm), 4 parafoveal (3-mm ring) as well as the 4 perifoveal (6-
mm ring) areas of the nasal, temporal, superior and inferior quad-
rants, resulting in 13 feature regions (Fig. 3, Table 1).

Before the feature extraction, all scans of left eyes were mir-
rored to conform to scans of the right eye. Finally, a machine-
learning approach based on the random forest regression was used
to obtain a predictive model of the BCVA. The random forest was
grown with 1000 trees and one third of the features were ran-
domly sampled as candidates at each split of a tree.

2.3. Statistical analysis

The predicted values for each patient were obtained using a ten-
fold cross-validation strategy. The performance of the predictive
ere separately, and the corresponding exudates (right). Intraretinal cystoid fluid is
layer surfaces were used. Tissue between the top surface at the internal limiting
green surface as the outer nuclear layer (ONL) and beneath the green surface down



Fig. 2. Example of how the thickness maps of a single case could look like if the segmentations were applied at all timepoints. Due to limitations in computational power, only
baseline, week 12 and week 24 (marked with red boxes) were chosen for analysis. From top to bottom: Central B-scan, total retinal thickness map, intraretinal cystoid fluid
thickness map, subretinal fluid thickness map.

Fig. 3. Early Treatment Diabetic Retinopathy Study (ETDRS) grid. Grid areas include
the foveal area (central 1 mm), 4 parafoveal as well as the 4 perifoveal areas for the
nasal, temporal, superior and inferior quadrants. The 4 parafoveal areas comprise
the 3-mm ring, which together with the foveal area is the 3-mm circle. The 4
perifoveal areas comprise the 6-mm ring, which together with the 3-mm circle is
the 6-mm circle.

Fig. 4. Structure-function prediction using machine learning at baseline. Scatter
plot of measured vs. predicted BCVA [letters]. The goodness of fit of the prediction
model was R2 = 0.21 (p < 0.001, R = 0.46). blue line: regression line, red line: perfect
correlation regression line, where R2 = 1.0.
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models was evaluated by the coefficient of determination (R2), indi-
cating the proportion of the variance of the measured BCVA values
that are explained by the predicted ones. Finally, the predictive val-
ues of the computed features were estimated by using the impor-
tance measure implemented within random forest, which relies
on randomly permuting the values of a feature and measuring
how such permutation affects the prediction accuracy of themodel.
3. Results

3.1. OCT data and features

Of 629 patients, eight were excluded due to poor image quality
(majority of B-scans missing or very low signal to noise ratio) at
baseline. All remaining OCT scans (621 patients, 1863 OCT vol-
umes) were processed and analyzed using automated segmenta-
tion. No segmentation was corrected and no wrongly segmented
cases were excluded due to the exploratory character of this pre-
liminary analysis. The number of potentially predictive features
identified included in the analysis (by combining the results of dif-
ferent automated algorithms and applying an ETDRS grid on each
scan) was 312 (104 for baseline, as only a single timepoint was
used, Table 1).
3.2. Structure–function correlation at baseline

At baseline, the regression model accuracy showed R2 = 0.21
(p < 0.001) as the level of correspondence between baseline BCVA
and the proposed baseline morphologic features from OCT (Fig. 4).
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Fig. 5 shows the ranking of the 20 most important features.
Using our random forest model, the area of IRC in the 3-mm region
around the fovea and in the 3-mm circle of the ETDRS grid seemed
to have the greatest predictive value. The top 20 ranking features
includes the segmentation features IRC in 5/20 (3/20 area,
2/20 vol), ONL in 5/20, total retinal thickness (TRT) in 4/20, SRF
in 3/20 (2/20 vol, 1/20 area) and IR in 2/20 times. In terms of
region, the center was represented in 2/20, the 3-mm ring or circle
in 11/20 and the 6-mm ring or circle in 7/20 features. In more
detail, the superior quadrant was represented in 3/20 cases, fol-
lowed by the inferior in 2/20 and temporal/nasal each in 1/20. This
finding suggests that IRC in the ONL could be important some-
where 3-mm around the fovea.

3.3. Prediction of BCVA after one year of treatment

Imaging data from baseline, week 12 and week 24 were
included in the analysis to predict BCVA after one year of treat-
ment. The regression model (Fig. 6) is able to predict the level of
correspondence between BCVA after one year of treatment and
the proposed morphologic features from OCT with an accuracy of
R2 = 0.23 (p < 0.001).

Fig. 7 shows the ranking of the 20 most important features with
predictive value for BCVA after one year of treatment. The highest
ranked feature was TRT in the central 3-mm circle around the
fovea at week 24. The frequency of feature groups in the top-
ranked features is shown in Table 2, demonstrating the importance
of IRC and TRT in the 3-mm region after therapy was started
(weeks 12 and 24 equally important).
Fig. 6. Prediction of BCVA after one year of treatment using timepoints baseline,
weeks 12 and 24. Scatter plot of measured vs. predicted BCVA [letters]. The
goodness of fit of the prediction model was R2 = 0.23 (p < 0.001, R = 0.48). blue line:
regression line, red line: perfect correlation regression line, where R2 = 1.0.
4. Discussion

In the study presented here, an innovative machine-learning
algorithm was applied to a well-defined dataset of patients with
DME. Our pioneering aim was to define morphologic features on
Fig. 5. Structure-function correlation using machine learning at baseline. Ranking of the t
total retinal thickness, IR – inner retinal layers (ILM to top of ONL), SRF – subretinal flu
OCT at baseline and after 12 or 24 weeks of anti-vascular endothe-
lial growth factor (VEGF) therapy that correlate well with visual
acuity at baseline or after one year of therapy. The results show a
fully automated ranking of the 20 most important morphologic
features for the prediction of baseline BCVA and BCVA after one
year. These need to be interpreted for clinical plausibility.
op 20 features (measured normalized importance). ONL – outer nuclear layer, TRT –
id, IRC – intraretinal cystoid fluid.



Fig. 7. Prediction of BCVA after one year of treatment using timepoints baseline, weeks 12 and 24. Ranking of the top 20 features (measured importance). TRT – total retinal
thickness, ONL – outer nuclear layer, IR – inner retinal layers (ILM to top of ONL), OR – outer retinal layers (bottom of ONL to RPE), SRF – subretinal fluid, IRC – intraretinal
cystoid fluid.

Table 2
Table showing top 20 ranked features according to the frequency of the appearance of
single features categorized into feature, location and timepoint of importance. In
brackets the frequency in 20 possible appearances is given.

Segmentation feature Timepoint Region

Total retinal thickness (8) Week 12
(9)

Parafoveal 3-mm ring (11)

Intraretinal cystoid fluid (8) Week 24
(9)

Total (4)

Area (4) Baseline
(2)

Nasal (4)

Volume (4) Superior, temporal, inferior
(each 1)

Subretinal fluid (2) Foveal central 1 mm (4)
Area (1) 3-mm circle (3)
Volume (1) Perifoveal 6-mm ring (1)

Outer retina thickness (1) Total (1)
Inner retina thickness (0) Nasal, superior, temporal,

inferior (0)
Outer nuclear layer thickness

(0)
6-mm circle (1)
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The most important features for predicting baseline BCVA were
mostly represented at the level of the ONL and the 3-mm ring and
circle of the ETDRS grid. Clinically, this finding should reflect
pathophysiological understanding of retinal disease. We know that
the most important location for ‘BCVA loss’ should be in the fovea
as BCVA is a functional test for the center of the retina, for a single
fixation spot compared with perimetry loss where a wider field of
visual perception can be tested in the periphery of the retina.
Therefore, we would expect the most important features also to
be located in the central 1-mm region around the fovea and not
to spread to 3 mm or even be located in the 3-mm ring sparing
the central 1-mm region. In addition, at first presentation patients
with vision-impairing DME usually shows IRC not only in the ONL
but also, in about 90% of cases, in the INL (unpublished data Prager
S. et al., Medical University of Vienna).

These location variabilities may be explained by the model. The
layer segmentation used was a graph-cut approach where layers
are dependent on each other. As edema can destroy the layer struc-
ture with devastating consequences, the retina was divided into
three main layers: The inner retina, the outer nuclear layer and
the outer retina. In DME, especially at baseline, IRC spaces are often
very large extending beyond anatomical layers which can make it
difficult to apply a layer segmentation. Our efforts to adapt to the
challenges of edematous disease by using the three main anatomic
regions were probably insufficient for DME. In this condition, the
border between the inner retina and outer nuclear layer is
destroyed and therefore no robust segmentation can be found. If
the giant IRC spaces penetrate the ONL and the INL, the anatomical
borders vanish and the algorithm will usually segment around the
IRC, attributing the giant IRC space to one of these layers. In our
case, this was most likely in the ONL, instead of dividing the IRC
and placing one half of it in the INL and the other half in the
ONL. Which of these two solutions is clinically correct, remains
contentious as there is literature supporting each of these solu-
tions. Nevertheless, on a technical level, it explains the overrepre-
sentation of the ONL and the underrepresentation of the inner
retina with IRC in the INL. Clinically, it is doubtful that IRC plays
a role when in the ONL but not when in the INL. But if pathophys-
iologically IRC first appears in the INL, it might be that the IRC in
the ONL plays a larger role because it shows a more advanced dis-
ease state. In any event, most patients with vision-impairing DME
already show both types of IRC at baseline.

The location to the 3-mm regions being overrepresented might
be explained by the fixation alteration of patients with DME. Their
fixation is usually not central and unstable when the photorecep-
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tor integrity is altered, which is the case at baseline in a large num-
ber of patients with DME (Wells et al., 2015, 2016). This means that
the OCT scans are not centered on the fovea and the location of the
central ETDRS grid subfield can be spread to all sides because our
algorithm has not centered the scans anatomically on the fovea
but has set the central ETDRS grid subfield automatically to the
center of the scan.

The ranking for the 20 best morphological predictors for visual
acuity after one year included potential predictors from three
timepoints, baseline, 12 weeks and 24 weeks, after anti-VEGF ther-
apy induction. The explanation of the pitfalls in interpreting the
baseline features easily accounts for why the later timepoints were
overrepresented for prediction of BCVA after one year. The layer
segmentation as well as the fluid segmentation will be more robust
once the IRC spaces get smaller and are limited to a single layer or
disappear. The field of the predictive features is still often 3 mm
but the center is now represented more often; the center of the
scan will most likely represent the fovea in more cases once the
DME resolves but in many patients the timepoint might still be
too early as fixation might need more time to fully recover. In some
cases, fixation might never come back as the photoreceptor integ-
rity might be permanently destroyed. Therefore, the position of the
fovea still needs to be found by an algorithm or manually.

The representation of IRC at weeks 12 and 24 in this ranking is
high. This could emphasize the importance of IRC behavior
(response or non-response) to anti-VEGF therapy; the high repre-
sentation of total retinal thickness could mirror cases where IRC
has gone and the IRC area and volume is close to zero (Gulshan
et al., 2016). Actually, SRF (area and volume) is the only feature
represented at baseline for the prediction of BCVA after one year.
This could potentially show that patients with SRF at baseline have
a better potential for responding to anti-VEGF therapy and gain in
vision as SRF protects the photoreceptor integrity, as has been
hypothesized by our group (Gerendas et al. in submission, Philip
et al. unpublished data, Medical University of Vienna) (Adhi
et al., 2016; Wang et al., 2016).

Besides the above-mentioned technical improvements needed
for valid clinical conclusions, our study is limited by its retrospec-
tive nature. Furthermore, baseline visual acuity, a major factor, was
not included in the machine-learning algorithm for the prediction
of visual acuity after one year. We know from earlier studies and
also from subanalyses of this same dataset that the initial BCVA let-
ter score of a patient is the strongest predictive factor for the final
BCVA outcome; patients with good initial BCVA will have better
final BCVA letter scores and patients with worse initial BCVA worse
final BCVA letter scores (Philip et al., 2016; Shen et al., 2016).

In addition, other publications suggest that there are other rel-
evant morphological features for the prediction of BCVA that we
did not included in our analysis. The integrity of the photoreceptor
layers, seen by a disruption of the external limiting membrane and
the inner-segments/outer-segments line on OCT, seems to have a
large influence (Garvin et al., 2008), which is obvious considering
its direct pathophysiologic correlation to the photoreceptor func-
tion and therefore to vision. This is supported by the hypothesis,
and finding, on the vision-preserving effect of SRF mentioned ear-
lier. Although to date not part of the current algorithmic pipeline,
these potential biomarkers need to be included for a clinically
meaningful analysis.

Another limitation is that the patients included underwent dif-
ferent OCT examinations. The clinical sites in the Protocol T study
used time-domain and spectral-domain OCT. Even though we only
included patients who had spectral-domain OCT imaging (about
90% of the total study population), two different spectral-domain
devices were used (Heidelberg Spectralis, about 60% of spectral-
domain OCT examinations; Zeiss Cirrus, about 40% of spectral-
domain OCT examinations). Segmentation algorithms are always
stronger when used on one coherent dataset. The IRC segmenta-
tion, for example, was in the first place developed for AMD as it
was trained with AMD ground-truth data. It would be needed to
be trained and validated for DME on both OCT devices separately
to achieve the best performance.

The final limitation is that the patients included were treated
with different drugs. From the main publication of the Protocol T
study (Schmidt-Erfurth et al., 2016), we know that Aflibercept
leads to a better final BCVA in patients with worse baseline BCVA
than bevacizumab, which is also mirrored by a better anatomical
response (central retinal thickness) of the patients. This better
anatomical response can be seen in both Aflibercept and Ranibizu-
mab (Schmidt-Erfurth et al., 2016). Therefore, for clinical conclu-
sions to be drawn our analyses should be repeated with the drug
as a co-variable or with consistent patient groups only (good
anatomical response, just one drug etc.).

Despite these limitations, we provide evidence that the applica-
tion of our machine-learning approach has great potential for the
analysis of DME datasets. Future work should aim at improving
the segmentation algorithms on ground-truth data of DME patients
by (1) including either manually set fovea positions or applying a
validated fovea-finding algorithm, especially to the baseline scans
where large edema can be seen, (2) including BCVA and photore-
ceptor segmentation, (3) excluding segmentation errors and (4)
correcting for potential confounders such as the OCT device, base-
line BCVA and drug given.

5. Conclusions

In conclusion, this study shows the immense potential of
machine-learning algorithms for interpreting the big data created
in modern ophthalmology. Even though earlier studies suggest that
the best biomarker for the prediction of vision outcome for DME
patients is baseline BCVA, machine learning has the ability to
detect morphologic features and judge their predictive value better
than any clinician evaluating data manually and with less bias than
this conventional approach. From our preliminary analysis, we can
hypothesize that IRC resolution after treatment initiation and the
presence of SRF at baseline are relevant features. Nevertheless,
machine learning is in its pioneering phase and procedures as well
as interpretations have to be carried out with great care. If this is
done properly, advanced computerized analysis of morphology
will become an important guide for treatment decisions on inter-
vals, drugs and monitoring needs. Automatically segmented fea-
tures with a strong correlation to early vision, which are features
beyond the current standards, will most likely be the future of
morphologic OCT interpretation.
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