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PURPOSE. To develop a data-driven interpretable predictive model of incoming drusen
regression as a sign of disease activity and identify optical coherence tomography (OCT)
biomarkers associated with its risk in intermediate age-related macular degeneration (AMD).

METHODS. Patients with AMD were observed every 3 months, using Spectralis OCT imaging,
for a minimum duration of 12 months and up to a period of 60 months. Segmentation of
drusen and the overlying layers was obtained using a graph-theoretic method, and the
hyperreflective foci were segmented using a voxel classification method. Automated image
analysis steps were then applied to identify and characterize individual drusen at baseline, and
their development was monitored at every follow-up visit. Finally, a machine learning method
based on a sparse Cox proportional hazard regression was developed to estimate a risk score
and predict the incoming regression of individual drusen.

RESULTS. The predictive model was trained and evaluated on a longitudinal dataset of 61 eyes
from 38 patients using cross-validation. The mean follow-up time was 37.8 6 13.8 months. A
total of 944 drusen were identified at baseline, out of which 249 (26%) regressed during
follow-up. The prediction performance was evaluated as area under the curve (AUC) for
different time periods. Prediction within the first 2 years achieved an AUC of 0.75.

CONCLUSIONS. The predictive model proposed in this study represents a promising step toward
image-guided prediction of AMD progression. Machine learning is expected to accelerate and
contribute to the development of new therapeutics that delay the progression of AMD.

Keywords: age-related macular degeneration, drusen, optical coherence tomography, image
analysis, machine learning

Age-related macular degeneration (AMD) is still the leading
cause of irreversible visual loss in the elderly population.1–3

Over time the disease progresses relentlessly toward late AMD.
Late AMD can be broken down into two general forms, atrophic
or neovascular; however, interindividual disease progression is
variable, and not all high-risk features in a macula progress to
late AMD within an individual. The pathogenesis of AMD is still
relatively unclear, and currently there is an effective treatment
available only for the less common, neovascular form. The
introduction of optical coherence tomography (OCT) has had a
profound impact on the assessment, early detection, and
monitoring of AMD progression by facilitating three-dimension-
al (3D) phenotyping of the retina and the neurosensory layers
in fine detail. Thus, to expedite the search for therapies that
could halt the progression of intermediate to late AMD, it is
essential to be able to identify early pathomorphologic changes
and predict individual AMD progression using adequate
biomarkers that are accessible by OCT imaging.

A clinical hallmark of early AMD is the presence of drusen,
which are focal deposits of cellular waste products that begin
to accumulate between the retinal pigment epithelium (RPE)
and Bruch’s membrane (BM). Excess drusen deposition can
lead to damage of the RPE and an inflammatory or degenerative
reaction that can result in retinal atrophy, the expression of
vascular endothelial growth factor (VEGF) and subsequent

neovascularization, or both.2 Drusen are dynamic structures
that can increase in size, fuse, or regress.4 A drusen-related
event of clinical interest is drusen regression. It is a naturally
occurring phenomenon whereby drusen spontaneously de-
crease in size or completely disappear. Although some eyes
showed regression without subsequent late AMD onset, in
many cases late AMD developed precisely at the location where
drusen regressed5–7; hence drusen regression is a potential
surrogate anatomic endpoint of intermediate AMD.8 However,
how to effectively predict drusen regression and its associated
predictive markers at an individual level is currently unclear,
and there is an ongoing research effort with the aim to identify
individuals and best timing for intervention. We hypothesize
that using exhaustive quantitative characterization of drusen on
OCT in combination with machine learning methods can reveal
the risk of incoming regression, which has failed using
conventional evaluation.

In this paper, we propose a data-driven predictive model of
incoming drusen regression (Fig. 1). It presents a substantial
extension of our previous work on this topic.9 For the learning,
we utilized a longitudinal dataset from a prospective observa-
tional study, consisting of OCT images of 61 eyes with early/
intermediate AMD, acquired at 3-month intervals. We devel-
oped an OCT-based drusen characterization using automated
image analysis methods of the outer retina, with a focus on its
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shape, local appearance of its structure, and that of the
overlying neurosensory layers, as well as its short-term
longitudinal change. Using such characterization, we devel-
oped a machine learning method based on survival analysis to
predict regression at the level of each individual druse. The
predictive model is evaluated using leave-one-patient-out cross-
validation, and the OCT biomarkers associated with the
successful prediction are reported.

METHODS

Participants

In a prospective observational study, patients with early and
intermediate AMD were followed every 3 months in a
standardized manner for a minimum duration of 1 year and
up to a period of 6 years, as has been reported in detail
previously.10 Patients with a history of previous intraocular
surgery other than uncomplicated cataract surgery were
excluded from the study, as were patients with any additional
eye-related comorbidities. The study was conducted at the
Department of Ophthalmology, Medical University of Vienna,
and the study protocol was approved by the local ethics
committee and adhered to the Declaration of Helsinki.

OCT Imaging Protocol. Imaging was performed with
Spectralis spectral-domain OCT (Heidelberg Engineering,
Heidelberg, Germany), which acquires anisotropic 3D images
having 1024 3 97 3 496 voxels with the size of 5.7 3 60.5 3

3.87 lm3, covering the volume of 6 3 6 3 2 mm3. In addition,
confocal scanning laser ophthalmoscopy (SLO) was used to
acquire an isotropic 2D fundus image of the same field of view,
with superior spatial resolution of 1536 3 1536 pixels with the
size of 5.7 3 5.7 lm2. The SLO fundus image and the OCT
image are acquired with the same optics and are coregistered
by the imaging device.

OCT Image Analysis

Outer Retinal Layer Segmentation. The outer retinal
layer segmentation (Fig. 2) is based on the publicly available
Iowa Reference Algorithms,11–13 which were first applied to
obtain a segmentation of the outer nuclear layer (ONL). Then,
we used the same graph-search segmentation approach with
modified smoothness constraints, which define the allowed
change in surface height when moving between neighboring
surface points. The lower RPE surface is obtained as a surface
positioned on the bright-to-dark intensity gradient, below the
ONL, with a weak smoothness constraint to allow for the
deformations introduced by drusen. This defines a layer
consisting of the outer retinal hyperreflective bands (ORB)

comprising outer photoreceptor segments and the RPE layer.
Subsequently, to account for drusen, from the same cost
function, the BM surface is obtained as a very smooth surface
with strong smoothness constraints, analogous to the approach
taken by Dufour et al.14

Hyperreflective Foci (HRF) Segmentation. To segment
HRF (Fig. 3), a voxel classification method based on
unsupervised representation and auto-context was devel-
oped,15 From a set of 2D image patches at various scales
(ranging from 2 3 2 to 40 3 40 pixels), a set of features was
created using principal component analysis, where the first 15
eigenvectors were used as convolution kernels on the intensity
scans. Then, from the convolutional features, a random forest
classifier was trained to provide, for every pixel of a B-scan, the
probability that it belongs to HRF. The results were further
refined with auto-context, an iterative approach that includes
spatial context extracted from previous classifications to refine
the prediction result of the next iteration.16 For training the
classifier, a set of 150 annotated B-scans from 40 OCT volumes
were used as the training set, which was completely disjoint
from the dataset used for the drusen regression prediction.
HRF were manually annotated by certified readers of the
Vienna Reading Center as any locally hyperreflective structures
above the RPE with reflectivity in the order of the RPE or
greater.

Individual Drusen Segmentation. From the segmenta-
tion of the outer retina, 2D en face thickness maps of drusen
are computed (Fig. 1). Focal maximal heights of the thickness
maps were taken to be the centers of individual drusen and
were denoted as the foreground markers. All areas with a
drusen thickness below an empirically defined threshold of 8
lm were denoted as the background markers. To cope with
confluent drusen, the marker-controlled watershed segmenta-
tion is applied with the imposed foreground and background
markers in the segmentation function. An example of the
obtained individual drusen segmentation is shown in Figure 4.
As a result, every individual druse has a 2D footprint area
associated as shown in Figure 4b.

Intrapatient Spatial Alignment. To characterize the
change of drusen across time, spatial alignment between the
longitudinal scans of the same patient (Fig. 1) needs to be
assured. To establish intrapatient spatial correspondence, we
employ a keypoint-based registration17 between the SLO
images. The key points are located using SURF feature
detector,18 which is robust to substantial illumination changes.
Finally, all scans of a patient are registered to its baseline scan
using a similarity transform, and the transformations resulting
from the registration of SLO images are applied to the
corresponding OCT images.

Drusen Characterization. To capture drusen properties,
we computed the following set of features from the baseline

FIGURE 1. Observations at baseline and the first follow-up are used for predicting drusen regression in the future, for example, the following 1-year
period.

Machine Learning of the Progression of AMD Based on OCT IOVS j Special Issue j Vol. 58 j No. 6 j BIO142

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/936229/ on 07/11/2017



scan for each druse within the region of interest defined by its
footprint (Fig. 5), following morphologic properties described
by Khanifar et al.19:

� Shape-based. Maximum height, mean thickness, area,
and volume of the druse, and the mean thickness of the
overlying ORB and ONL layers.
� Attenuation-based. The mean value and the variability

(standard deviation) of attenuation within the druse and
the overlying ORB and ONL layers were computed.
Instead of using device-provided image intensities, we
computed the corresponding attenuation coefficients as
proposed by Vermeer et al.,20 with the goal of standard-
izing the image intensities of similar tissues within and
across patients.
� HRF-based. Total and mean volume of HRF within the

druse and in the overlying ORB and ONL layers.

This results in 16 features (6 shape-based, 6 attenuation-based,
and 4 HRF-based) per individual druse. In addition, differential
features describing the change from the baseline to the first
follow-up scan are computed, making a total of 32 features.

Time Point of Drusen Regression. Given the large
number of drusen, the individual druse regression time point is
defined in an automated manner, as the point when its volume

drops to below 10% of its baseline value. To ensure accurate
estimation of regression status, layer segmentations of the RPE
and BM were manually inspected and corrected where
necessary by expert graders (MB and MGK). Only drusen with
a volume larger than 0.001 mm3, a height higher than 30 lm,
and within a 5-mm radius of the fovea were considered, as
done similarly in previous studies.5,6,21

Predictive Model of Drusen Progression

The predictive model was realized using sparse Cox propor-
tional hazard (CPH) regression.22,23 Such survival regression is
especially suitable for modeling time to event, under different
observation durations. The CPH model belongs to the class of
generalized linear models with the hazard function hðtjxÞ for a
druse characterized with the 32 dimensional feature vector x.
We directly used the hazard ratio (HR) h tjxð Þ=h0ðtÞ as the
drusen regression risk score; thus there was no need to
explicitly estimate the baseline hazard h0ðtÞ. The HR score is
then defined as:

HR ¼ h t j xð Þ
h0 tð Þ ¼ exp bT x

� �
ð1Þ

where b is the vector of coefficients defining the generalized

FIGURE 2. Examples of outer retinal segmentation. Four surfaces are segmented, denoting three layers. ON, outer nuclear layer; ORB, outer retinal
bands, comprising retinal pigment epithelium and outer photoreceptor segments.
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FIGURE 3. Examples of automated hyperreflective foci (HRF) segmentation (in red).

FIGURE 4. Example of individual drusen segmentation. (a) Drusen thickness map. (b) Segmentation and labeling of individual drusen, defining
drusen footprints. (c) B-scan with confluent drusen segmented into individual drusen.
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linear model. All the features were normalized by setting their
population mean to zero and unit variance.

To avoid overfitting, Lasso regularization was used, which
penalizes the number of model coefficients and therefore
favors simpler models. Thus, the model, while performing the
regression simultaneously, selected only the important fea-
tures, making it robust to overfitting and facilitating model
interpretability. The predictive model was hence obtained by
minimizing the following:

min
b
�

P
ijci¼0f g

log
exp bT xið ÞP
j2Ri

exp bT xjð Þ

� �
þ k

P
k

jbkj; ð2Þ

where ci indicates censoring, that is, the sum is over the set of
indices of drusen that regressed at ti. Ri is the active risk set of
drusen that neither regressed nor were censored at time ti. The
regularization parameter k was chosen from a set of 100
different values that minimizes the 10-fold cross-validation
deviance.

Statistical Analysis

The evaluation was performed using leave-one-patient-out
cross-validation, where all the drusen were assigned into folds
according to the patient they belonged to. Predictive models
were then optimized on the training set and then evaluated on
the unseen validation dataset, producing an unbiased HR score

for each druse. Drusen survival functions were stratified by the
predicted HR scores and were estimated with the Kaplan-Meier
plot, and the log-rank test was used to test for differences in
survival. The HR score was further used to evaluate the
prediction performance for different future time periods. The
performance for a particular time period was evaluated as the
area under the curve (AUC) of the receiver operating
characteristic (ROC), and the confidence intervals were
obtained by bootstrapping with 1000 samples. An operating
point of a ROC curve was selected by maximizing the Youden’s
statistic, which maximizes both sensitivity and specificity.
Finally, the feature importance was taken to be proportional to
the number of times each feature had been selected by the
predictive model across the folds.24

RESULTS

Clinical Characteristics

The proposed predictive model was evaluated on 61 eyes of 38
patients with intermediate AMD. The mean (6SD) age of
patients was 78 (66) years (range, 61–98); 74% were female.
The mean follow-up time was 37.8 6 13.8 months (range, 15–
63 months). The distribution of available scans across the
entire follow-up duration is shown in Figure 6a. A total of 944
drusen were identified at baseline, out of which 249 regressed

FIGURE 5. Example of 2D segmentation maps limited to 5-mm central diameter from which drusen-characterizing features are computed. Individual
drusen footprints are overlaid in white (a, d, e) or black (b, c). (a) Drusen thickness map. (b) Outer nuclear layer (ONL) thickness map and (c)
outer retinal bands (ORB) thickness map with the color maps centered on their mean thickness values. (d) Mean attenuation of each A-scan within
drusen. (e) Total HRF volume in the retina.
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(26%) during the follow-up and 74 (7.8%) over the first year
(Fig. 6b).

Prediction of Drusen Regression

The predictive model provided an HR value for each druse,
which we used as an estimate of the risk of regression. Survival
functions in the form of a Kaplan-Meier plot for the overall
drusen population, higher-risk drusen (HR > 1), and lower-risk
drusen (HR < 1) are shown in Figure 7a. The higher-risk and
lower-risk curves were well separated with a statistically
significant difference (P < 0.001). This demonstrates that the
predictive model was able to capture clinically relevant
differences between drusen.

Results of prediction performance for different time periods
are shown in Figure 7b. The predictive performance was

higher for earlier time periods as the number of examples was
greater, and the prediction was easier for near-term events. The
mean AUC was »0.75 or higher for predictions within the first
2 years and started to drop for predictions later than 2.5 years
from baseline.

Focusing on the prediction at year 1, the ROC curve
summarizing the classification performance is shown in Figure
8a, with a resulting AUC of 0.76 (confidence interval: 0.70–
0.82). By taking the operating point that maximizes Youden
index, we obtained a sensitivity of 0.76 and a specificity of
0.72. The operating point that had clinically acceptable
sensitivity of 0.80 had a specificity of 0.58. Visual examples
of drusen regression predictions after 1 year are shown in
Figure 9. It can be observed that the majority of the regressed
drusen were correctly predicted by the machine learning
model.

FIGURE 6. (a) Number of available eyes and patients across the duration of the study. (b) Number of occurring regressions at the drusen and the
patient level.

FIGURE 7. (a) Kaplan-Meier curves according to the estimated hazard ratio (HR). Black spikes indicate censored times, which are uniformly
distributed between the observed time points. (b) Prediction results for future time periods as the mean AUC with 95% confidence intervals.
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The feature importance, measured as the selection frequen-
cy during the cross-validation, is shown in Figure 8b. The
number of selected features across the folds was 8 6 2 (i.e., »
20% of the total number). All three feature categories, shape-
based, attenuation-based, and HRF-based, were used. In
particular, the shape-based mean drusen thickness and the
change of the drusen height were selected every time. Age was
the only demographic feature selected.

DISCUSSION

Intermediate AMD progresses in remarkably varied ways across
patients,25 and there are currently no known sensitive and
specific biomarkers indicating type and timing of individual
AMD progression.7 Detecting late AMD at the time of its onset
is crucial for initiating effective therapy and preventing vision
loss,26 but as the onset of late AMD has often already resulted
in irreversible vision loss, therapeutic interventions need to
ultimately target AMD at an intermediate stage when function
is still intact. Efficient screening in millions of patients with
drusen can be undertaken only if the pathognomonic risk
factors for progression/conversion are recognized and target-
ed. Furthermore, the availability of robust biomarkers for
disease progression is a crucial prerequisite for the develop-
ment of innovative therapeutic strategies, particularly in a
slowly and variably progressing disease such as intermediate
AMD. The pathways leading from intermediate to late AMD
often have a preceding event of drusen regression in common.4

In this work, we developed an interpretable predictive model
of individual drusen regression in a data-driven way, in an effort
to predict and identify markers of risk of imminent drusen
regression.

We developed a machine learning–based method that uses a
large set of biomarkers to estimate the risk of regression (HR
score), at the level of an individual druse. We benefited from an
exceptionally adequate study of patients with intermediate
AMD, imaged on a regular 3-month basis. The model relies on
imaging biomarkers measured at baseline and the first follow-
up visit, only 3 months apart. The evaluation showed that the
obtained model is of value for predicting drusen events within
the following 2 years, having an AUC performance of 0.75.
Observing the selected features of the sparse regression model
revealed that the mean drusen thickness, maximum drusen
height, and the attenuation had the greatest impact. An

additional benefit of using sparse models is that we need only
to segment and quantify the few features used by the model in
order to make predictions, saving time on image processing
and analysis.

In this work, we use HRF as a general term for locally
hyperreflective structures with reflectivity in the order of the
RPE or greater. They are assumed to be a combination of
accumulated lipids, microglia, and migrating or transdifferen-
tiating RPE cells.27 We did not distinguish among different
types of HRF conglomeration but differentiated them by the
layer in which they reside, that is, whether directly on top of
drusen in the ORB or further above in the ONL. HRF volume in
ONL was found to be related to regression but not as strongly
as drusen shape and attenuation-based features. The role of
HRF in our work may be underestimated due to different HRF
types being considered and pooled together; hence further
HRF subtyping is part of our future work. Another difficulty in
comparing HRF properties and its role with related work is that
different authors might consider different objects as HRF due
to their loose definition.

Understanding the phenomenon of drusen regression
started with studies observing the natural history of AMD
progression. The basic work of Sarks28 was guiding the path
toward understanding of drusen biology as it could clearly be
shown that a stage of incipient atrophy can be recognized as an
area of diffuse hyperfluorescence in which pigment clumping
or reticular pigment figures and fading of drusen occur.28

Yehoshua et al.5 characterized drusen by total volume and area,
but the regression could not be successfully predicted. Ouyang
et al.6 found the presence of HRF overlying drusen and the
heterogeneous internal drusen reflectivity to be related with
the local onset of atrophy in the ensuing months. Querques et
al.29 reported calcifications inside the regressing drusen.

Drusen properties have been previously inspected for their
role in predicting conversion to late AMD. In de Sisternes et
al.,30 the area, volume, height, and reflectivity were found to
be informative features for the transition to exudative AMD.
Abdelfattah et al.31 found that baseline drusen volume was a
predictor of conversion to late AMD in eyes that already had
neovascular AMD in the fellow eyes. Reflective drusen
substructures were found to be predictive of progression to
geographic atrophy.32 In the work of Folgar et al.,21 drusen
volume and RPE abnormal thinning volume were found to be
related with the risk of progression to late AMD. However, all

FIGURE 8. (a) ROC curve for 1-year prediction with 95% confidence intervals. (b) Ranking of features involved in the prediction denoted as shape-
based (blue), attenuation-based (red), HRF-based (green), and demographic-based (yellow).
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of these studies offered recommendations based on properties
summarized over all the drusen present.

An important distinction of our approach is that we
obtained a personalized predictive model at the level of
individual drusen, which enabled us to generate estimates of
personalized future regression maps as shown in Figure 9. In
addition, to the best of our knowledge this is the first time
quantitative properties of HRF were used and not just the
status of their presence. Machine learning applied on
longitudinal OCT imaging data has recently been shown to
be a powerful approach for personalized predictive modeling
in a growing number of ophthalmic applications, including
predicting recurrence of macular edema.33 anti-VEGF treat-
ment responders,34 progression to late AMD,30 and progression
of geographic atrophy.35

Previous analysis of drusen volume development in this
patient cohort10 has been performed using polarization-
sensitive (PS) OCT, which measures the polarization state of
backscattered light. The melanosome content of RPE cells
changes the polarization state, hence producing a strong RPE-
specific signal,36 allowing effective RPE and drusen segmenta-
tion.37 With advances in SD-OCT image segmentation algo-
rithms, drusen can nowadays be reliably segmented on SD-
OCT as well,14,38 diminishing the need for using PS-OCT for
this specific task. Nevertheless, melanin-sensitive PS-OCT
would have a value in HRF subtyping, in particular in
identifying the HRF that originate from RPE, a subject of our
future work.

This pilot study has several limitations, most notably a
relatively small sample size. Thus, caution should be exercised
when generalizing our findings beyond the analyzed popula-
tion. It is difficult to identify and recruit patients for such a
clinical study, because early and intermediate stages of AMD do
not affect patients’ vision. We therefore included multiple eyes

per patient to increase the overall study eye population, while
balancing the statistical analysis for this. In addition, pseudo-
drusen, a biomarker suspected to play a role in AMD
progression,39 was not used in our study due to difficulties in
its automated segmentation. Finally, we identified drusen
footprints at baseline and kept them fixed, hence not
accounting for possible drusen footprint expansion with time.
However, most of the drusen area tends to plateau quickly.40

Features characterizing drusen are computed from the 2D
segmentation maps (Fig. 5). Accurate layer segmentation of
pathologic outer retinas is a complex task, in particular in the
presence of sloughed RPE and when HRF are positioned at the
layer interfaces (Fig. 2, top row); hence segmentation errors
are possible. We addressed segmentation error robustness in
two ways. First, we focused on segmenting large and coarse
layers only, that is, ONL and ORB, as opposed to further
segmenting RPE and inner and outer segments (IS/OS) within
ORB. Second, layer-related features were obtained by averaging
thickness maps over the individual drusen footprint, smooth-
ing out local segmentation errors in the process. Finally,
machine learning methods are able to identify general patterns
and trends in data, and occasional unreasonable feature values
are simply treated as outliers.

In this work, we treat confluent drusen as a cluster of
individual drusen, while a regression event is likely to affect the
entire cluster equally. Alternatively, characterizing them jointly
would diminish their heterogeneous aspect. Thus, the exploi-
tation of structural information and interaction with neighbor-
ing drusen is still a subject of our future work. In addition, as
opposed to using a set of predefined biomarkers, deep
learning41 approaches, which could learn representations of
retinal images through a hierarchy of abstraction levels, are a
promising path forward.42

FIGURE 9. Examples of drusen thickness maps and the drusen regression prediction within 1-year period. Last column shows true positives
(green), false positives (orange), and false negatives (blue). Each row represents one example eye.
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In summary, results of our pilot study show that multidi-
mensional patterns of OCT biomarkers are predictive of
incoming drusen regression. Predictive and interpretable
models of disease development are highly needed to improve
early patient management/screening for patients at risk and
increase our knowledge of pathophysiologic mechanisms of
AMD progression. The proposed model is the first to allow
personalized, objective, and reproducible prediction of drusen
regression, which develops within a predictable time frame. It
is a promising step forward toward identification of innovative
imaging biomarkers of imminent conversion form intermediate
to late disease in AMD, and will aid the development and
evaluation of new interventions that target intermediate stages
of AMD.
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12. Garvin MK, Abràmoff MD, Wu X, Russell SR, Burns TL, Sonka
M. Automated 3-D intraretinal layer segmentation of macular
spectral-domain optical coherence tomography images. IEEE

Trans Med Imaging. 2009;28:1436–1447.

13. Chen X, Niemeijer M, Zhang L, Lee K, Abràmoff MD, Sonka M.
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