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PURPOSE. The purpose of this study was to predict low and high anti-VEGF injection
requirements during a pro re nata (PRN) treatment, based on sets of optical coherence
tomography (OCT) images acquired during the initiation phase in neovascular AMD.

METHODS. Two-year clinical trial data of subjects receiving PRN ranibizumab according to
protocol specified criteria in the HARBOR study after three initial monthly injections were
included. OCT images were analyzed at baseline, month 1, and month 2. Quantitative spatio-
temporal features computed from automated segmentation of retinal layers and fluid-filled
regions were used to describe the macular microstructure. In addition, best-corrected visual
acuity and demographic characteristics were included. Patients were grouped into low and
high treatment categories based on first and third quartile, respectively. Random forest
classification was used to learn and predict treatment categories and was evaluated with
cross-validation.

RESULTS. Of 317 evaluable subjects, 71 patients presented low (�5), 176 medium, and 70 high
(‡16) injection requirements during the PRN maintenance phase from month 3 to month 23.
Classification of low and high treatment requirement subgroups demonstrated an area under
the receiver operating characteristic curve of 0.7 and 0.77, respectively. The most relevant
feature for prediction was subretinal fluid volume in the central 3 mm, with the highest
predictive values at month 2.

CONCLUSIONS. We proposed and evaluated a machine learning methodology to predict anti-
VEGF treatment needs from OCT scans taken during treatment initiation. The results of this
pilot study are an important step toward image-guided prediction of treatment intervals in the
management of neovascular AMD.

Keywords: anti-VEGF therapy, image analysis, machine learning, optical coherence
tomography, choroidal neovascularization

AMD is the leading cause of irreversible vision loss in the
elderly population in the developed world.1 Furthermore,

with aging in the modern population, the number of AMD
patients is expected to keep growing steeply. Anti-VEGF agents
are highly effective and have revolutionized the treatment of
neovascular AMD,2 significantly reducing AMD-associated
blindness and visual impairment.3,4 However, the high drug
cost and the need for frequent injections are placing a large
socioeconomic burden on health care systems and patients. In
addition, many patients do not maintain initial best-corrected
visual acuity (BCVA) gains with long-term follow-up.2

AMD is a highly complex disease with a broad spectrum of
pathophysiologic factors, genetic backgrounds, and morpho-
logic features. From previous clinical trials, it is clear that
interindividual treatment requirements are vastly heteroge-
neous, indicating that the optimal treatment should be tailored
to an individual,5 using precision medicine instruments.

Introduction of spectral-domain optical coherence tomography
(SD-OCT) initially allowed the qualitative and subsequently the
quantitative examination of pathomorphologic features of the
retina, becoming essential in active monitoring, treatment
decisions, and patient visit scheduling on an individualized
basis. The most commonly used individualized treatment
regimens for the treatment of neovascular AMD, pro re nata
(PRN), and treat-and-extend (TE),6 both rely on continued OCT
imaging to inform decisions on treatment and monitoring.
Nevertheless, in real-world clinical practice, both regimens
often result in general undertreatment, because both hospitals
and patients find it difficult to sustain frequent resource-
consuming monitoring visits.2 To facilitate resource manage-
ment, injection decision making, and patient counseling, it is of
great interest to be able to predict the extent of treatment
requirements for each patient at the beginning of the
therapeutic course. However, currently it is not clear what

Copyright 2017 The Authors

iovs.arvojournals.org j ISSN: 1552-5783 3240

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/936282/ on 07/11/2017

https://creativecommons.org/licenses/by-nc-nd/4.0/


differentiates patients with low or high treatment needs, and
OCT imaging biomarkers to predict these individual treatment
requirements represent an unmet medical and socioeconomic
need.7,8

The aim of this pilot study is to predict, on an individual
patient level, low and high anti-VEGF injection requirements
during a PRN treatment regimen of patients with neovascular
AMD. Our hypothesis suggests that these requirement catego-
ries can be predicted by observing retinal morphology and
treatment response as early as during the standardized
initiation phase of the treatment course. Using automated
computational analysis of OCT, a set of spatiotemporal features
was extracted from imaging series, characterizing the retina
and its anatomic response to the initial anti-VEGF treatment.
Machine learning methods were then applied to build a
predictive model of the future therapeutic requirements during
the PRN regimen. The model was trained and validated on 2-
year data from a large-scale prospective randomized controlled
trial in treatment-näıve AMD patients.

METHODS

Participants

This post hoc analysis was performed on data of patients
undergoing PRN treatment within the HARBOR clinical trial
(ClinicalTrials.gov number, NCT00891735). HARBOR was a 24-
month, phase III, randomized, multicenter, double-masked,
active treatment-controlled study with 1095 randomized
patients to evaluate efficacy and safety of intravitreal ranibizu-
mab 0.5 and 2.0 mg administered monthly or on a PRN basis in
treatment-naive patients with subfoveal neovascular AMD.
Patients in the PRN groups had monthly evaluations and
received ranibizumab monthly for the first three doses (Fig. 1).
At the month 3 visit and thereafter, they received ranibizumab
only if the retreatment criteria were met (at least five-letter
decrease in BCVA from the previous visit or any evidence of
disease activity on SD-OCT). For our analysis, we pooled the
eyes receiving 0.5 and 2.0 mg because the trial did not report
any significant differences between the two doses5 and the
initiating monthly regimen was identical. The study was
conducted in compliance with the Declaration of Helsinki,
and approval for this post hoc analysis was obtained by the
Ethics Committee at the Medical University of Vienna. Patients

provided written informed consent to participate in the
HARBOR trial.

OCT Image Processing and Analysis

The proposed methodology is based on a fully automated
image processing and analysis pipeline available at the Vienna
Reading Center (VRC), Vienna, Austria. No manual corrections
have been performed in this study. All images were acquired
with Cirrus HD-OCT III (Carl Zeiss Meditec, Inc., Dublin, CA,
USA) presenting 512 3 128 3 1024 voxels, with a size of 11.7 3

47.2 3 2.0 lm3, covering a volume of 6 3 6 3 2 mm3.
OCT Motion Correction. Involuntary eye movements

during the acquisition of OCT scans create motion artefacts
that affect three-dimensional (3D) image analysis. As a
preprocessing step, we reduced motion artifacts using the
method of Montuoro et al.9 The method takes advantage of self-
similarity property of the retina and simultaneously retains the
retinal curvature, shape, and potential pathologies. It first
corrects motion artifacts along the axial direction by shifting
individual A-scans to restore the local shape symmetry of the
retina. Second, maximizing pairwise phase correlation be-
tween B-scans, correction along the primary (horizontal) scan
direction is obtained. It is especially advantageous to our task
as it can be retrospectively applied to already acquired OCT
images regardless of the scan protocol or device, whereas most
other methods require special scanning patterns or multiple
orthogonal acquisitions. The motion correction facilitates the
subsequent layer segmentation and feature extraction, which
both rely on 3D image information.

Retinal Layer Segmentation. Automated retinal layer
segmentation is performed with a graph-theoretic method, part
of the Iowa Reference Algorithms.10,11 The method transforms
the problem into a multiscale 3D graph search to optimally and
efficiently segment a set of surfaces according to image-based
cost function and satisfying a priori hard constraints on surface
smoothness and intersurface distances. As the a priori
constraints are valid for healthy retinas, only a subset of layer
interfaces is well segmented in neovascular AMD population.
Thus, the following four principle layer thickness maps were
extracted, which were empirically found to be robustly
segmented: inner retina (IR), outer nuclear layer (ONL),
photoreceptor outer segments with retinal pigment epithelium
(OR), and total retinal thickness (TRT). An example of
segmented surfaces denoting those layers is shown in Figure 2.

FIGURE 1. Illustration of the monitoring and treatment schedule. The initiation phase consisted of monthly injections for 3 months (M0–M2)
followed by the PRN treatment regimen. PRN was based on monthly monitoring and administering 0 to 21 potential injections.
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Intraretinal and Subretinal Fluid Segmentation. Seg-
mentation of intraretinal cystoid fluid (IRF) and subretinal fluid
(SRF) was performed per B-scan using a validated segmentation
algorithm based on deep learning.12 First, based on the top and
the bottom retinal layer, a mask is computed denoting the
retina extending from the inner limiting membrane (ILM) to
the RPE. Then, every voxel within the mask is classified with a
multiscale convolutional neural network (CNN) as belonging
to one of the three classes: Normal retina, IRF, or SRF (Fig. 3).
The CNN had been trained in a supervised manner using a
training set of 157 OCT volumes with » 20,000 manually
annotated B-scans, acquired with the same OCT device model
(Cirrus; Zeiss) and having the same pathology (neovascular
AMD), which were disjoint from the set of images in the
HARBOR trial.

Predictive Model of Treatment Requirements

For each eye, from its longitudinal series of three OCT volumes
(baseline, month 1, and month 2) and the derived segmenta-
tions, we extracted a set of quantitative features characterizing
the underlying retinal pathomorphology. For the imaging
features to correspond across subjects, before the feature
extraction, all scans of left eyes were mirrored to conform to
scans of a right eye. From the image segmentations 2D maps

were computed corresponding to the thickness maps of the
four layers, as well as volume and en face area maps of both IRF
and SRF, resulting in eight 2D maps in total, with examples
shown in Figure 4a. Analyzing data in high-dimensional OCT
volumes is affected by the so-called ‘‘Curse of Dimensionality,’’
where learning is very difficult and prone to overfitting. To
limit the dimensionality of the feature vector and facilitate the
machine learning, we summarized the A-scan properties
spatially across the regions defined by the Early Treatment
Diabetic Retinopathy Study (ETDRS) grid as depicted in Figure
4b. The ETDRS grid was placed at the center of the scan, and
the mean feature values per ETDRS subregions were comput-
ed. In addition to the nine ETDRS grid cells, we additionally
included the central 3 mm, central 6 mm, and the rings
corresponding to the parafoveal and perifoveal bands, resulting
in 13 spatial regions in total. Such ETDRS-related features have
the additional advantage of being easier to interpret than A-
scan related ones, due to widespread use of ETDRS grid in
ophthalmology. To this set of imaging features, we added the
measured BCVA. To measure the rate of change of the
longitudinal features, the differences between the correspond-
ing features of the consecutive time points (month 1�month 0
and month 2�month 1) were further included. This resulted
in the number of local spatio-temporal features being 525,
computed as follows: (8 feature maps 3 13 spatial regionsþ 1

FIGURE 2. Example of (a) the automated layer segmentation result with the four principal surfaces denoted (in yellow) and (b) the total retinal
thickness map.

FIGURE 3. Example of the automated fluid segmentation result of intraretinal (in red) and subretinal (in blue) fluid.
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BCVA) 3 5 temporal elements. Last, demographic features were

added: sex, race, age, and smoking status together with the

fluorescein angiogram pattern type, for a total of 530 features.

The maximum number of injections during the 2-year PRN

regimen is 21 (months 3 to 23). We defined the category of

‘‘low’’ requirements to consist of patients in lower quartile of

the number of injections, which corresponded to receiving no

more than five injections. Analogously, the category of ‘‘high’’

requirements was defined to consist of patients in upper

quartile, which corresponded to receiving ‡16 injections. The

remaining eyes in the interquartile range were assigned to the

‘‘medium’’ requirements category. We aim to discriminate the

patients in the low requirement group from the medium and

high requirement groups, and analogously, the ones in the high

requirement group from the medium and low requirement

groups. Thus, we pose the problem as a multiclass one-versus-
all classification.

Finally, a machine learning approach based on the random
forest classifier13 was used to obtain a predictive model of the
low and high treatment requirements from the set of the above
features. Random forest was grown with 1000 trees for which
the out of bag mean squared error was observed to have
converged. The number of features to randomly sample as
candidates at each split of a tree was chosen to be the square
root of the number of features ð

ffiffiffiffiffiffiffiffi

530
p

Þ, which is the default
setting for a classification task.13

Statistical Analysis

To assess how the results would generalize to an independent
data set, the performance of the predictive model was

FIGURE 4. (a) Example of the initiation phase OCT images and corresponding segmentations of TRT, IRF, and SRF for the five temporal elements
across months (M). (b) Spatial localization of the features based on the 13 regions obtained from ETDRS grid with circle diameters of 1, 3, and 6 mm.
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evaluated using cross-validation (CV). The sample is randomly
partitioned into 10 equal sized complementary subsamples.
Then, across 10 iterations, onefold is selected as the validation
set and the other nine folds serve as the training set. Thus, in
each iteration, 90% of the data was used for training and 10%
for validation. In such a setting, all patients in the data set
participate in a validation, and each is predicted exactly once.
In our study, 10-fold CV, as opposed to exhaustive or 2-fold CV,
provided a very good compromise between minimizing the
correlation between the learned models across the folds and
the size of the training set available to a model in each fold.
Because the random forest model produces a probabilistic
estimate (percentage of the trees that voted positive) of
belonging to a certain treatment requirement category, the
quantitative performance across all the validated predictions is
summarized with an area under the receiver operating
characteristic (ROC) curve and presented as sensitivity and
specificity at an operating point.

To put the results into perspective and create a human
performance benchmark, we asked a retinal specialist (XL) to
perform the grading by making an estimate of the treatment
requirement category based on observing the three volumetric
OCT scans from the initiation phase (i.e., the same set of scans
as used by the predictive model). For comparison, the
operating point of the predictive model was also reported at
the level of the grader’s sensitivity/specificity.

To evaluate the predictive role of features, the importance
measure implemented within random forest classifier relies on
permuting the values of a feature and measuring how much the
permutation decreases the prediction accuracy of the model.
Important features can then be detected as those where the
permutation decreases the prediction accuracy the most.
Finally, to evaluate if a single feature separates treatment
requirement categories with statistical significance, a two-
sample t-test was performed, and the Hochberg-Bonferroni
approach was used to control the overall significance level for
the multiple comparison effect.

RESULTS

Patient Characteristics

Of a total of 548 patients in the PRN arms, 375 (»70%) were
randomly selected, whereas the remainder was kept for future
use. Of these, 40 were discarded due to not having completed
the 2-year study, whereas some were discarded due to missing
scans (12 eyes) or image quality and segmentation issues (6
eyes) during the initiation phase. Finally, data of 317 eyes were
used in our study. In this subset of the HARBOR study
population, the mean 6 SD age of patients was 78 6 8 years
(range, 53 to 97 years); 57% were female, and 96% were white.
The mean 6 SD baseline visual acuity (VA) was 55 6 12 letters
(range, 15 to 76 letters). Overall, 50% of patients had minimally
classic choroidal neovascularization (CNV) lesions, 14% had
predominantly classic lesions, and 36% had purely occult CNV.

Prediction of Treatment Requirements

The number of injections administered during the PRN period
from month 3 until month 23 ranged from 0 to 21. One patient
required no injections, and 16 patients required monthly
injections. The distributed injection burden in the HARBOR
population was as follows: 70 (22%) required low, 71 (22%)
required high, and 176 (56%) required a medium number of
flexible injections. A ROC of the predictive model, represent-
ing the trade-off between specificity and sensitivity, is shown in
Figure 5a. We also built the predictive model in steps as the

measurements are becoming available along the progress of
the initiation phase (Fig. 5b). The areas under the curve (AUCs)
for predicting the categories grew monotonically, starting with
0.60 and 0.61 at baseline, 0.68 and 0.74 at month 1, and finally
0.70 and 0.77 at month 2 for the low and high requirements,
respectively. Hence, an estimation after the first treatment
interval was close in performance to the final prediction
scores. The model relied mainly on the last measured time
point, as including earlier time points did not result in the
further increase in performance.

For predicting the low injection requirements, the false
positives (patients wrongly predicted to have low require-
ments) are considered clinically more adverse than the false
negatives. Thus, there the operating point was set to favor
specificity over sensitivity. No such preference exists for
predicting the high requirements, so there the operating point
was set to maximize the specificity and the sensitivity. Using
such defined operating points, the predictive model detected
the low requirements patients with 71% specificity and 58%
sensitivity and the high requirements patients with 71%
specificity and 70% sensitivity (Fig. 5a).

A human grader has achieved sensitivities of 0.41 and 0.37
and specificities of 0.84 and 0.84 for detecting the low and
high treatment requirements (Fig. 5a), respectively. Thus, the
grader was conservative in assigning low and high treatment
categories, and consequently, the errors were mostly false
negatives, where the low/high treatment categories were
graded as the medium ones. Corresponding sensitivities for the
equivalent 0.84 specificity of the predictive model were 0.38
and 0.54 for the low and the high treatment requirements,
respectively. Thus, the model had a comparable performance
for predicting the low and almost 50% better performance in
predicting the high treatment requirements.

Relevance of Retinal Features

The top 15 important features found are shown in Figure 6a.
The feature importance was correlated with the course of the
initiation phase, with the most important features being
measured at the end of the initiation phase at month 2. The
distribution of the top 50 most important features across the
type and the time point measured (Fig. 6b) shows the highest
number of features at month 2, especially the ones related to
SRF, as well as layer thicknesses and SRF at month 1, whereas
baseline features were poorly represented. The importance of
differential features was low, with none appearing in the top
15, and only four such features appearing in the top 50. In
comparison to the imaging data, the role of BCVA was
moderate, appearing in the middle of the list of features sorted
by importance. In comparison to the longitudinal data,
demographic and fluorescein angiogram features were found
not to be important, with only age having a moderate
importance. In fact, the four features at the very bottom of
the list were sex, fluorescein angiogram CNV type, smoking
status, and race.

The role of TRT, IRF, and SRF area and volume, at the central
1 and 3 mm, during the three time points were further
individually investigated for statistically significant differences
between the retreatment categories. After correcting for
multiple comparisons (5 3 2 3 3 ¼ 30 features examined),
the formal statistical significance level was set to P < 0.002.
The following features were found to be statistically signifi-
cantly different between the groups. The role of TRT at the
central 1 mm is shown in Figure 7. The difference between the
three groups gradually increased with time, and at the end of
the initiation phase (month 2), there was a difference between
the low and the medium groups (P ¼ 0.02) and a significant
difference between the medium and the high (P < 0.001)
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groups. The role of IRF and SRF became evident at month 2 as
well. Differences in IRF areas at the central 3 mm (Fig. 8a) were
close to significant (P ¼ 0.003) between the low and medium
groups and strongly significant between the medium and high
groups (P < 0.001). Regarding the role of SRF (Fig. 8b), the
difference in volume in the central 3 mm was close to
significant (P ¼ 0.006) between the low and medium groups
and was strongly significantly different between the medium
and high requirement subjects (P < 0.001). All the above
features were strongly statistically significantly different
between the low and high groups (P < 0.001).

DISCUSSION

In this pilot study, we presented and evaluated a computer-
based method to learn and predict low and high anti-VEGF
treatment requirements of neovascular AMD patients from a
longitudinal series of OCT scans acquired during the initiation
phase. The predictions were based on fully automated image

analysis and obtained by machine learning using a random
forest as a nonlinear predictive classification model. Develop-
ment and validation were performed on data from the
HARBOR clinical trial, which is particularly appropriate due
to its large cohort size, standardized OCT imaging, and an
effective PRN retreatment protocol.5

Our results demonstrate that a solid AUC of 70% to 80% was
achieved for predicting both the low and the high treatment
categories. The same performance was achieved by taking the
last available time point only, because, interestingly, differential
features measuring the change along the initiation phase were
not found to have an important role. Thus, the state of the
retina after the initial anti-VEGF doses seems more predictive of
the future treatment requirements than the preceding baseline
condition or the magnitude of morphologic improvement.
Predicting the high requirements proved to be a more
successful task, with the overall AUC performance being better
than the prediction of the low treatment requirements, which
is in line with clinical needs to avoid undertreatment. For both
categories, similar performance was already achieved using

FIGURE 5. (a) ROC of the predictive model with the denoted operating points (diamond) and the operating points of the human grader (circle). (b)
Progress of the AUC of the prediction along the initiation phase from month 0 (M0) to month 2 (M2).

FIGURE 6. Feature importance. (a) Top 15 features sorted by the estimated feature importance. (b) Distribution of the top 50 features grouped by
the type and the measured time element.

Prediction of Treatment Requirements in Neovascular AMD IOVS j June 2017 j Vol. 58 j No. 7 j 3245

Downloaded From: http://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/936282/ on 07/11/2017



measurements from month 1, indicating that the observation
of the retinal response after only one injection was already
predictive of future management requirements.

The human performance evaluation revealed that this
prediction task is also difficult for a human grader as well,
who performed similarly across the detection of the low and
high treatment categories, producing low sensitivity and high
specificity. We should emphasize that such a task is not
commonly done in the clinic; it is not part of ophthalmologists’
training, and a large intergrader variability is expected.
However, the evaluation showed that such treatment require-
ment prediction task is very suited for a machine learning
approach where the machine could learn highly complex
multidimensional patterns from high-resolution OCT scans and
use the knowledge to make equal (for the low category) or
even better (for the high category) predictions than human
graders.

Inspecting a few individual features, the TRT in the central
1 mm, IRF area, and SRF volume in the central 3 mm were
found to be discriminative. The low retreatment group had
mostly dry retinas by the end of the initiation phase.
Nevertheless, this was also the case with some of the subjects
from the medium requirement group. Such absence of any
visible exudative features on the OCT made the task of
distinguishing the low from the medium requirements group
more difficult, resulting in poorer sensitivity for predicting the
low requirement category and encouraging clinicians to
continue with a tight monitoring regimen despite a satisfactory
response early on. For the high requirement group, the more
persistent the exudates in the retina were during treatment
initiation, the more retreatments were required.

This work follows on the recent breakthroughs in the field
of artificial intelligence. In particular, machine learning fueled
by large data sets is showing a great promise for its application
in precision medicine. Furthermore, advances in automated 3D

image analysis are allowing streamlined, objective, and
repeatable quantification of the underlying pathomorphologic
properties. The combination of the two technologies has
recently led to successful first steps in using longitudinal OCT
imaging data for predicting disease recurrence,14 treatment
responders,15 and progression to late AMD.16 To the best of our
knowledge, our study is the first to attempt to predict the anti-
VEGF treatment requirements in AMD, especially on such a
large homogeneous cohort.

The study has several limitations. The predictive model
relies on features resulting from image segmentation methods,
and they therefore have to be accurately extracted (Figs. 2a, 3).
We did not perform correction of the automated segmentation
results because using such a large number of scans (951 OCT
volumes) makes manual corrections prohibitively time con-
suming. However, we do expect the predictive model to be
resistant to some segmentation errors due to the dimension-
ality reduction performed by averaging over the ETDRS grid
cells and the large cohort size used that should make random
forest robust to outliers. In addition, we could use only the
main four retinal layers as the others were found not to be well
segmented. Future improvements in automated intraretinal
layers of patients with macular edema would allow us to rely
on information from more layers and further boost the
performance of the predictive model. Regarding the human
performance evaluation, the grader relied on the OCT scans
only and was not informed of the demographic variables, but
we don’t expect that this impacted the comparison as the
predictive model did not find them to be very predictive.
Finally, the fovea was assumed to be at the very center of the
scan, potentially resulting in misalignments of the superim-
posed ETDRS grid. Nevertheless, due to feature averaging over
relatively large spatial areas formed by the ETDRS grid regions,
small position inaccuracies are not expected to have a large
negative effect.

FIGURE 8. IRF area (a) and SRF volume (b) at month 2 across the three treatment categories.

FIGURE 7. TRT at the central 1 mm between the three treatment categories during the initiation phase.
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Our underlying hypothesis was that longitudinal OCT
images during the initiation phase contain the necessary
information that can reveal future treatment requirements.
The treatment categories were defined based on injection
percentiles to focus on detecting patients lying on the
extremes of treatment requirements. Our results show that
prediction is possible, but currently it is not clear what is the
upper bound of accuracy of such a prediction task (i.e., how
much of treatment requirement variability can be explained by
OCT imaging alone?). Also, the treatment requirements
observed in our learning model were the result of specific,
protocol-defined, retreatment criteria with a specific anti-VEGF
treatment (ranibizumab) used in the HARBOR clinical trial and
might not represent the clinically optimal treatment require-
ments for other anti-VEGF drugs. Nevertheless, the retreatment
criteria of HARBOR appeared to be very efficient as shown by
excellent outcomes in comparison with other PRN-guided
trials. In addition, as the population participating in the trial
was subject to strict inclusion criteria, how our predictive
model would perform on the general population requires
further investigation. Nevertheless, as a result of the large
variability in aggressive activity in neovascular AMD, individ-
ualization of the therapeutic management is clearly an
appropriate strategy. Only a minor proportion of patients
require a monthly retreatment regimen (approximately 5% in
our representative study). Rates were retrospectively shown to
be similarly low in other PRN-guided trials such as CATT, IVAN,
and GEFAL.17–19 The most important risk for loss of initial
BCVA gains during flexible regimens is undertreatment, which
has been demonstrated both in long-term clinical trials such as
HORIZON20 and the VIEW Open-Label Extension Study
(ClinicalTrials.gov number, NCT00964795) as well as in real-
world studies and registries, such as LUMINOUS and WAVE.21,22

Attempts to treat all patients with a bimonthly regimen as
used for aflibercept in the VIEW studies may be adequate for
many patients. Averaging results for treatment efficacy and
frequency in this way can lead to noninferior outcomes.
However, advanced analyses have meanwhile shown that such
a 2q8 regimen misses optimal efficacy for a subgroup of
patients.23 Some patients will be overtreated, with unnecessary
injections and associated expenses being incurred, and most
importantly, some with an aggressive disease course will be
undertreated and significantly lose vision.23 Advanced predic-
tion analysis, however, offers an individualized method to
adjust retreatment schedules to disease activity while simulta-
neously reducing the socioeconomic burden of AMD therapy.
Also, the proposed prediction is already efficient from the first
2 months of treatment initiation, and it applies to almost half of
the AMD population, including the high-risk groups of under-/
overtreatment at both ends of the spectrum.

As part of future work, further understanding and
interpretation of the effect of different phenotypes on the
treatment requirements is needed. This should be combined
with the efforts to include genetic markers and quantify
additional imaging biomarkers, namely outer retinal tubulation,
hyperreflective foci, subretinal hyperreflective material, and
fibrous scarring.7 Also, retreatment indications may be
modified by experience from structure/function correlation
showing variable associations between different locations of
fluid pooling.7 Finally, we plan to improve the precision of the
model to predict the number of required injections per year or
the mean time to retreatment.

In summary, results of our pilot study show that early
response to anti-VEGF therapy for AMD is predictive of
treatment requirements and indicate the potential for imaging
to guide monitoring and treatment regimen. The presented
precision medicine tool represents a first step toward
predicting the expected treatment frequency consistent with

the level of disease activity that can ultimately lead to
substantial improvement in resource management and patient
counseling in a reliable way. The search for features relevant
for the prognosis of management of neovascular AMD, such as
IRF/SRF at different locations and timelines, will also strongly
improve the insight into pathophysiologic mechanisms of
disease progression.
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