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Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal
spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the
availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available,
come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and
evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key
indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable
to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF
segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for
system training has been annotated bymultiple graders using a proprietary system. Evaluation of the intergrader annotations shows
a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and
machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand
Challenge.

1. Introduction

Spectral-domain optical coherence tomography (SD-OCT) is
the most important ancillary test for the diagnosis of sight
degrading diseases such as retinal vein occlusion (RVO), age-
related macular degeneration (AMD), and glaucoma [1]. SD-
OCT is a noninvasive modality for acquiring high resolution,
3D cross-sectional volumetric images of the retina and the
subretinal layers, in addition to retinal pathology such as
intraretinal fluid, subretinal fluid, and pigment epithelial
detachment [2, 3]. Detection and segmentation of such
pathologies are an important step in the diagnosis of disease

severity and treatment success, as well as an early stage
towards the accurate prediction of both [4, 5]. The detection
of intraretinal cystoid fluid (IRF) is a particularly important
indicator of disease severity and change in exudative macular
disease as increased retinal thickness has shown to correlate
with poor visual acuity [6]; thus automated detection and
segmentation methods are required to employ “big data” in
visual acuity and treatment progression prediction.Thus IRFs
have been chosen as the basis for this multivendor reference
dataset and grader performance assessment [7, 8].

At the time of writing, there is no publically available
dataset of SD-OCT scans acquired from multiple SD-OCT
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Table 1: Dataset composition showing total scans of each scanner vendor within each dataset.

Set Spectralis scans Cirrus scans Topcon scans Nidek scans Total scans
Training 4 4 4 3 15
Testing 4 4 4 3 15

devices and featuring a wide variety of IRF appearances, with
an accompanying expertly annotated ground truth, that is to
say, manually annotated IRF regions by trained individuals.
Such a dataset is important for the development of novel
segmentation algorithms as it allows for the training and
testing of new systems with a general reference. In the current
literature, methods of IRF segmentation are limited, using
training and validation datasets that are not always publically
available [9–12]. This results in difficulty in reproducing
results for comparative purposes, which in addition do not
always use the same evaluation measures. Equally important
is the reproducibility of IRF annotations used to construct
the reference standard. High interobserver agreement is
necessary; however this is difficult due to the challenging
nature of manual IRF delineation. The combination of a
reproducibly annotated dataset and evaluation framework
will facilitate the consistent and uniform comparison of
newly developed and current methods through standardized
measures of segmentation accuracy [13]. Furthermore, this
would allowmethods to be assessed as part of a segmentation
challenge [14, 15], an important and effective means by which
novel methods are developed in not only medical imaging
research but also many other fields in computer vision. This
may facilitate a better understanding of the positive and
negative aspects of each developed method in an effort to
improve performance, as well as opening avenues for further
development or collaboration.

Thus the purpose of this work is to create a multivendor
SD-OCT dataset comprised of clinically representative scans
with IRFs annotated by multiple expert graders. This work
will show the reproducibility of the annotations, suitable
for use as a reference standard to both train and validate
IRF segmentation methods. Furthermore, a standardized
evaluation framework for IRF segmentation is presented.

2. Materials and Methods

2.1. Dataset. The dataset constructed here is comprised of 30
distinct SD-OCT scans from fourmajor OCT devices used in
ophthalmology (Zeiss Cirrus, Heidelberg Spectralis, Topcon
3D 2000, and Nidek RS3000) in the proportions described
in Table 1. The image datasets were selected from the image
database of Vienna Reading Center (VRC), featuring large
datasets from several international phase II and III pharma-
ceutical trials in retinal disease. The individual images were
chosen by medical experts in order to reflect a representative
distribution of OCT scanners, acquisition settings, disease
stages, and image quality.

This study was conducted in compliance with the tenets
set forth in the declaration of Helsinki. The trials from which
the scans were taken were approved by the institutional
review board of theMedicalUniversity ofVienna. All patients

gave written consent for participation in the respective trial
and all data was appropriately anonymized.

The dataset is further divided into 15 training scans and
15 testing scans chosen to be representative of the wide
variety of scans seen in the clinical environment, in addition
to the wide variety of IRF appearances and distributions.
Both the training and testing subsets comprised 4 scans
per vendor aside from Nidek with 3. Each scan within this
dataset has been explicitly chosen to contain a wide variety
of IRF sizes, shapes, and appearances. This is particularly
important for algorithm training (such as that of machine
learning techniques) asmethods will need to learn the variety
of possible cyst appearances across different devices while
factoring in the noise pattern and signal response variation
across different devices. All 15 training scans have been
annotated on each individual slice comprising the OCT
volume (henceforth known as a B-scan) by two distinct
expert graders at the Christian Doppler Laboratory for
Ophthalmic Image Analysis (OPTIMA), Medical University
of Vienna, who have been trained to identify IRFs using a
criteria explained in the following section.

The testing set is intended for validation of IRF segmen-
tation systems and thus also contains the same spectrum of
IRF appearances, sizes, and shapes as seen in the training
subset, in addition to normal cases to act as control images.
Figure 1 presents exemplar B-scans from each of the 4
devices, exemplifying the varying signal and noise and IRF
appearance variations (indicated by the white arrows).

Each retinal OCT volume is approximately 6 × 6 ×
2mm3 and centered on the macula. The coordinate system
used to represent the retinal volume is shown in Figure 2
[16]. Figure 2(a) demonstrates the location of the B-scans in
relation to the anatomical eye and the respective 𝑋, 𝑌, and
𝑍 image planes in red, green, and blue. In Figure 2(b) the
primary (𝑏

𝑝
) and secondary (𝑏

𝑠
) scan directions are depicted,

in addition to their relationships with themajor image planes.
Using the same color coding system as described previously,
the red B-scan can be seen, in addition to the perpendicular
green A-scan. The windows defined by 𝑤

𝑝
and 𝑤

𝑠
are not

utilized here. Furthermore, Figure 2(a) shows the raster scan
pattern (blue arrow) utilized by the OCT devices used to
acquire the scans for this dataset. Dependent on device, the
physical dimensions equate to 200 × 200 × 1024, 256 × 256 ×
885, 512 × 128 × 885, 512 × 128 × 1024, or 512 × 49 × 496 pixels.

2.2. IRF Annotation. Annotation was performed using a
proprietary system developed at the OPTIMA Lab with
functionality to perform manual pixel level annotations of
retinal SD-OCT scans. Annotation is performed in the B-
scan plane, examples of which are shown in Figure 3 for each
device where the annotated IRF outline is shown in green.
Not only do the examples in Figure 3 exemplify the varying
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Figure 1: Exemplar retinal B-scans from 4 SD-OCT devices showing variations in noise and appearance. White arrows indicate exemplar
IRFs.
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Figure 2: (a) Retinal OCT scan coordinate space in relation to anatomical eye. (b) OCT scan pattern representing the red, green, and blue
colored planes shown in (a) [16].
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Figure 3: Exemplar annotated B-scans showing annotated cysts in green.
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size and appearance of IRFs in SD-OCT, but also it can be seen
that scans from different vendors vary, sometimes greatly,
with respect to image quality, signal-to-noise ratio (SNR), and
contrast, thus making the task of manual IRF segmentation
very difficult and time-consuming.

Each grader was tasked with manually delineating the
IRF structures that were visible to them in each B-scan of a
volume using free-hand drawing with a stylus and tablet.

The criteria the graders used to analyze IRFs were as
follows:

(i) Shape/intensity: the IRF shape spectrum is broad,
ranging from circular/oval to an amorphous blob.
However, IRF intensity is generally low due to the
attenuation of light as the medium is primarily liquid.

(ii) Distinction: IRFs usually have distinct borders sep-
arating their interior with the surrounding tissue.
However, this is dependent on the scan image quality
and the presence of noise.

(iii) Continuity: IRFs are three-dimensional objects and as
such may be present across multiple contiguous B-
scans. However, this is dependent on IRF size and
the B-scan slice thickness used at acquisition by the
device and study protocol.

(iv) Position: IRFs which significantly affect visual acuity
are generally located in and around the fovea of
macula centered retinal OCT scans, which is the
functional center of vision.

This annotation process stores the manually delineated
regions on each B-scan, 𝑆Bscan(𝑍,𝑋), within a separate
volume containing the positions of the annotated cysts,
𝑉(𝑍,𝑋, 𝑌), extractable using various computational means.
For usage purposes, the annotated IRFs are extracted using
MATLAB (The Mathworks Inc.) and stored using the
standardized XML format [17] and the coordinate system
described previously and in Figure 2.

Figure 3 shows exemplar annotated IRFs from each of
the four devices, outlining in green the annotated IRF struc-
ture(s). As can be seen, IRFs range in size and appearance, as
well as location. In addition, Figure 3 demonstrates the chal-
lenging nature of manual human expert annotation of such
objects given that cysts may be extremely small in size, with
difficult-to-delineate boundaries, requiring approximately
150 hrs in total to annotate the 30 scans. The time intensive
nature of manual IRF segmentation further illustrates the
requirement for accurate and reproducible automated meth-
ods for IRF segmentation, as it is not feasible nor possible for
human graders to perform this task accurately for such long
periods or for large datasets.

2.3. Standardized Evaluation Framework. IRF segmentation
algorithm results must be evaluated in a standardized way
so that results from different methods are comparable. In
addition, as IRFs are delineated by their boundaries, a
relevant measure of accuracy is required to gauge system
performance. Thus we propose the use of three initial
measures: firstly area overlap with reference IRF positions,
secondly distance from reference IRF boundaries, and thirdly

the intersection-over-union which is also widely used in
evaluating image segmentation. The first measure examines
the overlap between system segmented IRF area results
and reference standard, based on the Sørensen-Dice index
(DSC) [18]. The second measure is based on the Hausdorff
distance [19]which examines the distance between the system
segmented IRF regions and ground truth. The third measure
examines the overlap between system and reference IRF areas
by computing the intersection divided by the union. The set
of IRF coordinate points of all segmented IRFs on a given B-
scan is defined as 𝑆Bscan(𝑍,𝑋) and the reference IRF points
for a given B-scan are defined as 𝑅Bscan(𝑍,𝑋) where 𝑍 is the
position on the vertical axis of the B-scan, 𝑋 is the position
on the horizontal axis of the B-scan, and 𝑌 is the B-scan in
the volume (Figure 2):
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where 𝑂Bscan is the overlap for a specific B-scan:

𝐻(𝑆Bscan, 𝑅Bscan) = max (ℎ (𝑆Bscan, 𝑅Bscan) , ℎ (𝑅Bscan, 𝑆Bscan)) , (2)

where 𝐻 is the Hausdorff distance between sets 𝑆Bscan and
𝑅Bscan:

𝐼Bscan =
𝑎𝑟𝑒𝑎 (𝑆Bscan ∩ 𝑅Bscan)

𝑎𝑟𝑒𝑎 (𝑆Bscan ∪ 𝑅Bscan)
, (3)

where 𝐼Bscan is the intersection-over-union overlap for a
specific B-scan.

Thus we compute the overlap between the reference
annotation and system segmentation for a given B-scan using
(1) resulting in a value within {0 ⋅ ⋅ ⋅ 1} where being closer
to 0 represents poor overlap and being closer to 1 a high
overlap, taking themean over all B-scanswith cysts to give the
overlap for the entire volume (𝑂Volume).We use theHausdorff
distance between point sets 𝑆Bscan and 𝑅Bscan as described by
(2) to compute the distance between the ground truth and
segmented IRFs for a given B-scan resulting in a pixel value
(𝐻Bscan).We compute themean distance over all B-scans with
IRFs to give the overall distance for the volume (𝐻Volume).
The intersection-over-union overlap between reference and
system segmentation for a given B-scan is computed using
(3) resulting in a value within {0 ⋅ ⋅ ⋅ 1}, where being closer to
0 represents poor overlap and being closer to 1 a high overlap.
Again the mean over all B-scans with cysts is computed to
give the overlap for the entire volume (𝐼Volume).

In addition to the overall score resulting from the three
quantitative measures mentioned here, system performance
is further evaluated using two further criteria: clinical sig-
nificance of the IRF and IRF size. Due to their composition
and position, some IRFs may be more clinically significant to
disease than others. These IRFs tend to be larger and located
below and around the fovea, which is the functional center of
vision [20].Thus their size and position are used as classifiers
with the central 3mm circular region used as a mask 𝑚
applied to the enface OCT image [21]. This is demonstrated
in Figure 4 where the red circle in Figure 4(a) denotes the
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(a) (b)

Figure 4: (a) Exemplar retinal OCT volume depicting the circular ROI in red. (b) Exemplar B-scan taken from the location represented in
blue in (a).

Table 2: Vendor specific small cyst size dimensions in micrometers (width × height).

Spectralis Topcon Cirrus Nidek
Size 𝜇m (width × height) 58.08 × 19.36 39.00 × 13.00 29.33 × 9.775 63.23 × 21.08

masked region displayed on a volume render of the retinal
OCT. The B-scan seen in Figure 4(b) demonstrates post
masking, where the blue line in Figure 4(a) denotes where the
B-scan is located. Thus𝑂Mask and𝐻Mask, respectively, denote
the DSC overlap and Hausdorff distance for the masked
region.

However, larger IRFs are generally much more visible;
thus smaller IRFs are harder to delineate due to poor SNR
and poor boundary distinction. Thus the second additional
measure assigns a label to small cysts such that their seg-
mentation accuracy is evaluated separately. For the purposes
of this evaluation framework, a small IRF is assigned a
physical minimum size (𝜇m), computed from the minimum
IRF size as annotated by expert graders at the OPTIMA Lab.
Thus 𝑂𝑆Volume and 𝐻𝑆Volume denote the DSC and Hausdorff
distance of small IRFs per volume, and 𝑂𝑆Mask and 𝐻𝑆Mask
denote the DSC andHausdorff distance for small IRFs within
themasked region. Small IRF size is defined by theminimum
IRF size for each vendor in Table 2. It should be noted that a
separate minimum IRF size has been identified per device;
this is due to the interdevice image acquisition differences.

In summary, the ten measures defined to evaluate seg-
mentation performance are as follows:

(1) Overall overlap using DSC, 𝑂Volume.
(2) Mean Hausdorff distance between IRF boundaries,
𝐻Volume.

(3) Intersection-over-union, 𝐼Volume.
(4) Measures 1, 2, and 3 within the central 3mm masked

region (Figure 4(a)), 𝑂Mask and 𝐻Mask.
(5) Measures 1, 2, 3, and 4 for small IRFs, 𝑂𝑆Volume,
𝐻𝑆Volume, 𝐼𝑆Volume, 𝑂𝑆Mask , and 𝐻𝑆Mask.

3. Results

Fifteen scans comprising the training dataset were annotated
by two separate graders (G1 and G2). Table 3 shows the
number of IRFs annotated by each grader resulting in a total
of 9,457 annotated IRFs. Grader 1 annotated a mean ± SD
of 302.6 ± 349.1 and Grader 2 annotated a mean ± SD of

327.9 ± 368.1 IRF regions. The agreement of the manual IRF
annotation between Graders 1 and 2 was good with a mean
difference of 25.3 IRF regions as shown in Figure 5(a) in
addition to Pearson’s 𝑟 = 0.98 (𝑃 < 0.0001). Furthermore,
there was 𝜅 = 0.76 between the two graders based on total
IRF annotation.

This is expanded upon in Table 4 in which the difference
in total annotated IRFs is presented between the two graders.
The total difference in annotated scans between the two
graders was 629 IRF regions with a mean ± SD of 41.9 ± 45.2
IRF regions.

A challenging aspect of IRF annotation is poor distinc-
tion between IRF regions. This may result in one observer
annotating one large IRF and another observer annotating
multiple smaller IRFs. Thus we analyze the pixel wise area of
the annotated IRF regions, presented in Table 5.

Between the two graders, the total annotated IRF area
was 3,833,289 pixels, Grader 1 annotated IRFs comprised
1,900,960 pixels, and Grader 2 annotated IRFs comprised
1,932,329 pixels, with an intersecting area of 1,447,480 pixels.
As shown in Figure 5(b), agreement between the two graders
was again good based on IRF area with a mean difference of
2091.3 pixels, in addition to Pearson’s 𝑟 = 0.99 (𝑃 < 0.0001).
Furthermore, there was 𝜅 = 0.86 between the two graders
based on annotated IRF pixel wise area.

Grader reproducibility is further assessed using Haus-
dorff distance [19] computation between annotated IRF point
sets, shown in Table 6. The mean Hausdorff distance ± SD
between the two graders was 34.71 ± 30.98 pixels.

4. Discussion

The resulting manual IRF annotations obtained in this study
must be fit for purpose as a reference standard for both
IRF segmentation training and validation. That is to say,
not only is it necessary for annotations to be accurate to
the position and delineation of the objects in question, but
also in the case of the training dataset where annotation
was performed by two graders, the annotations must be
similar. The first major contribution of this work is a dataset
comprised of multidevice SD-OCT scans representative of
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Figure 5: Bland Altman plots of annotated IRFs by the two graders. (a) Agreement of manual annotation between Graders 1 and 2 was good
with a mean difference of 25.3 IRFs. (b) Agreement between Graders 1 and 2 based on area of annotated IRFs in pixels was also good with
mean difference of 2091.3 pixels.

Table 3: Annotated IRFs by Grader 1 (G1) and Grader 2 (G2) training scans 1 to 4 for each vendor.

Set Spectralis Cirrus Topcon Nidek Mean ± SD total IRFs
G1 G2 G1 G2 G1 G2 G1 G2

Training 1 128 129 39 46 399 547 299 323 238.8 ± 182.4
Training 2 16 19 69 77 1,170 1,276 258 353 404.8 ± 519.5
Training 3 136 115 995 928 455 409 370 523 491.4 ± 324.3
Training 4 55 47 18 27 132 99 n/a n/a 63 ± 44.04
Mean ± SD total IRFs 80.63 ± 51.54 274.9 ± 424.6 560.9 ± 437.6 354.3 ± 91.67

Table 4: Difference in number of annotated IRFs between Grader 1 and Grader 2 in the training set scans 1 to 4 for each vendor.

Set Spectralis Cirrus Topcon Nidek Mean diff. ± SD (IRFs)
Training 1 1 7 48 24 20 ± 21.06
Training 2 3 8 106 95 53 ± 55.07
Training 3 21 67 46 153 71.75 ± 57.34
Training 4 8 9 33 n/a 16.67 ± 14.15
Mean diff. ± SD (IRFs) 8.25 ± 8.99 22.75 ± 29.51 58.25 ± 32.52 90.67 ± 64.61

Table 5: Total IRF area in pixels annotated by each grader in the training (Trn) set including total number of pixels intersecting (∩).

Set Spectralis (area) Cirrus (area) Topcon (area) Nidek (area) Mean diff. ± SD (area)
G1 G2 G1 G2 G1 G2 G1 G2

Trn. 1 43,986 51,895 24,549 30,017 121,654 128,716 161,714 149,601 8138 ± 2,837
∩ = 38,197 ∩ = 18,840 ∩ = 85,268 ∩ = 126,594

Trn. 2 7,699 8,030 101,264 100,865 400,826 459,439 165,165 157,524 16,746 ± 28,121
∩ = 7,114 ∩ = 89,619 ∩ = 291,832 ∩ = 120,507

Trn. 3 63,879 67,666 386,812 361,372 264,401 257,270 77,549 72,662 10,311 ± 10,181
∩ = 44,865 ∩ = 284,912 ∩ = 221,973 ∩ = 49,732

Trn. 4 7,576 8,361 3,734 4,623 70,152 74,288 n/a n/a 1,937 ± 1,905
∩ = 6,619 ∩ = 2,716 ∩ = 58,692

Mean diff. ± SD (area) 3,203 ± 3,492 8,049 ± 11,817 19,236 ± 26,289 8,213 ± 3,647
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Table 6: Hausdorff distance between grader annotations in pixels.

Set Spectralis (pixels) Cirrus (pixels) Topcon (pixels) Nidek (pixels) Mean dist. ± SD (pixels)
Training 1 37.42 18.92 48.51 123.1 56.99 ± 45.75
Training 2 3.162 14.79 52.43 8 19.56 ± 22.40
Training 3 18.28 60.70 44.15 50.25 43.34 ± 18.06
Training 4 4.123 16.03 20.83 n/a 55.12 ± 78.25
Mean dist. ± SD (pixels) 15.74 ± 16.02 27.61 ± 22.13 41.48 ± 14.18 60.46 ± 58.24

IRF compositions seen in exudative macular disease. This
dataset was annotated by trained graders at the OPTIMA Lab
using a predefined annotation criteria based on observed IRF
characteristics, described in Section 2.2. A standardized eval-
uation framework comprised of 4 key measures (Section 2.3)
was created to evaluate IRF segmentation algorithms trained
using the aforementioned dataset.

Manual delineation of intraretinal cystoid fluid is an
extremely time-consuming and difficult task. However, accu-
rately and reproducibly segmented IRFs are necessary as
they provide clinically significant information regarding the
development, progression, and treatment success of patients
with exudative macular disease. As shown in [4], IRFs are an
important spatiotemporal feature for longitudinal and cross-
patient disease analysis in diseases such as RVO and neovas-
cular AMD. For such purposes, larger datasets are required
from which such features are extracted; thus in “big data”
situations, there is a need for automated methods of feature
extraction (such as IRFs). Furthermore, accurate delineation
of features allows the implementation of semisupervised and
weakly supervised learning techniques [22] to be applied to
“big data.”

Our findings show that, given the criteria of shape/inten-
sity, distinction, continuity, and position describing IRFs,
it is possible to annotate these regions reproducibly by
two trained graders who are masked to each other. This
is exemplified by the high degree of intersection between
the two graders with respect to IRF annotation area (>75%
intersection pixels) and correlation coefficients 0.98 and
0.99 for IRF region and IRF area, respectively. Furthermore,
grader agreement was good exemplified by high 𝜅.

The difference in total annotated IRFs between Graders 1
and 2 is shown in Table 4 (calculated from the total annotated
IRFs by each grader shown in Table 3) ranging from 1 to
over 150 objects. This large range is possibly a result of
the subjective nature of human observer annotation despite
the presence of guidelines. For example, one grader may
judge an object as 1 large IRF, whereas another grader may
delineate it as a series of smaller IRFs with aminimal distance
between region boundaries. Another possible explanation for
IRF region variability is related to the device. Of note is the
mean ± SD difference in annotated IRFs by vendor showing
that in the case of the Heidelberg Spectralis scans, where the
presence of noise is lower due to the averaging of multiple
B-scan acquisitions and motion correcting eye tracker is
lowest. This value increases for Zeiss Cirrus scans and
continues to do so for Topcon 3D 2000 and Nidek RS3000,
respectively. This trend correlates with the observed change
in image quality in combinationwith increasing speckle noise

(Figure 1), increasing the difficulty for human observers to
accurately and reproducibly annotate IRFs.

Thus the number of annotated IRFs is not a representative
measure of actual IRF composition and is less suitable for
calculating intergrader reproducibility. A more accurate and
precise measure is the total object area in pixels annotated
by each grader. This can be seen in Table 5 in addition to
the total intersection area for each scan, representing the
voxels annotated by both graders. As can be seen, in 10 of
15 cases, the difference between graders' total IRF areas was
less than 10% of the respective total IRF area for a given
scan. In addition, 4 cases were calculated with a difference
between grader IRF areas below 5% of the respective total
IRF area. This figure rises to 14 out of 15 cases when the
threshold is raised to 20% of total annotated IRF area by
each grader. Furthermore, examination of the multigrader
annotated training dataset Hausdorff distance (Table 6),
examining if an annotated voxel from Grader 1 is close to
an annotated point from Grader 2, results in a mean ± SD
Hausdorff distance of 34.22 ± 30.98 pixels. Again, this is
noticeably lower for Spectralis scans (15.74 ± 16.02 pixels)
where image quality is better which is to be expected as
grader delineation difficulty is lower, compared to Cirrus
(27.61 ± 22.13 pixels), Topcon (41.48 ± 14.18 pixels), and
Nidek (60.46 ± 58.24 pixels), correlating with their respective
levels of noise andpoorer image quality.This is the same trend
seen in the analysis of total IRF objects annotated from each
device. Despite this, the mean Hausdorff distance is still low,
indicating a good correlation between graders.

To the best of the authors’ knowledge, the dataset pre-
sented here is the only publically available dataset comprised
of expertly manually annotated intraretinal fluid in SD-OCT
scans frommultiple vendor devices.The high reproducibility
we have shown between grader annotations for each scan in
the training dataset is a major advantage of a training dataset
annotated by multiple graders as this demonstrates good
accuracy and precision. Furthermore, this makes this dataset
suitable and fit for use as accurate and reproducible reference
standard for the development of retinal IRF segmentation
algorithms. In addition, this has also shown that annotation
by a single grader examined here is sufficient for use in
algorithm testing based on the inclusion criteria describing
the IRFs. As such, the testing dataset described in Table 1
has been annotated by a single expert grader per scan and
as mentioned previously is intended for testing of developed
methods.
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