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ABSTRACT

Retinal vessels are one of the few anatomical landmarks that are clearly visible in various imaging modalities
of the eye. As they are also relatively invariant to disease progression, retinal vessel segmentation allows cross-
modal and temporal registration enabling exact diagnosing for various eye diseases like diabetic retinopathy,
hypertensive retinopahty or age-related macular degeneration (AMD).

Due to the clinical significance of retinal vessels many different approaches for segmentation have been
published in the literature.1 In contrast to other segmentation approaches our method is not specifically tailored
to the task of retinal vessel segmentation. Instead we utilize a more general image classification approach and
show that this can achieve comparable results.

In the proposed method we utilize the concepts of eigenfaces and auto-context. Eigenfaces2 have been
described quite extensively in the literature and their performance is well known. They are however quite
sensitive to translation and rotation. The former was addressed by computing the eigenvessels in local image
windows of different scales, the latter by estimating and correcting the local orientation. Auto-context3 aims to
incorporate automatically generated context information into the training phase of classification approaches. It
has been shown to improve the performance of spinal cord segmentation4 and 3D brain image segmentation.5

The proposed method achieves an area under the receiver operating characteristic (ROC) curve of Az = 0.941
on the DRIVE6 data set, being comparable to current state-of-the-art approaches.
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1. INTRODUCTION

In this paper we propose a supervised method based on the idea of eigenvessels (similar to eigenfaces2) and an
auto-context loop3 for result refinement. Rotation invariance is achieved by estimating the local orientation and
rotating the eigenvessels correspondingly. The method is then tested on the DRIVE data set.

2. METHODOLOGY

The proposed method uses a supervised learning approach and thus is split into two parts: the training phase
(see algorithm 1) and the classification phase (see algorithm 2).

The key points of the algorithm are the orientation estimation (described in section 2.1), the rotated win-
dow/feature extraction (described in section 2.2), and the auto-context loop (described in section 2.3).

Each image is converted to gray scale and preprocessed as described by Soares et al.7 in order to reduce
artifacts generated by the circular field of view of fundus cameras (see figure 1).
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Algorithm 1: training phase

input : set of training images I
and corresponding labels

output: set trained classifiers Cn,
eigen vessels and poscontext

φ← orientationEstimation(I)
wimage ← rotatedWindows(I, φ)
f image, eigen vessels← pca(wimage)
wlabels ← rotatedWindows(labels, φ)
poscontext ← peaks(mean(wlabels))
for n = 0 to number of context loops do

for Ii in I do
if n = 0 then

f temp ← f imageI\Ii

f Ii ← f imageIi

else

f temp ← f imageI\Ii ∪ fpredictionI\Ii
n−1

f Ii ← f imageIi ∪ fpredictionIi
n−1

Ctemp ← train(f temp, labels)
P (Ii)n ← predict(Ctemp, f

Ii)

fpredictionI
n ← context(Pn, φ, pos

context)
if n = 0 then

f train ← f imageI

else

f train ← f imageI ∪ fpredictionI

n−1

Cn ← train(ftrain, labels)

return C∗, eigen vessels, pos
context

Algorithm 2: classification phase

input : image to segment I
output: vessel probability map for I
φ← orientationEstimation(I)
f image ← project(I, φ, eigen vessels)
for n = 0 to number of context loops do

if n = 0 then
Pn ← predict(Cn, f

image)

else

Pn ← predict(Cn, f
image ∪ fpredictionn−1 )

fpredictionn ← context(Pn, φ, pos
context)

return Pnumber of context loops

Figure 1. preprocessed image (original FOV highlighted)

2.1 Local orientation estimation

We estimate the local image feature orientation φ(x, y) around the pixel position (x, y) in the input image I
using masked central image moments. By varying the size of the window different scales of image features can be
considered. Figure 2 shows the result for different scales h and figure 3 shows the circular mask used for h = 10.

For each pixel position (x, y) in the input image I we estimate the local image orientation φ(x, y) by calculating
the angle of the eigenvector with the largest eigenvalue as shown in (1).

φ(x, y) = 1
2 · arctan(

2 · µ̂11(x, y)

µ̂20(x, y)− µ̂02(x, y)
) (1) µ̂pq(x, y) = µpq(x,y)

s(x,y) (2)

with µ̂pq(x, y) being the masked second order central image moment around the position (x, y) as defined in
(2), µpq(x, y) being the masked central image moment around the pixel (x, y) as defined in (3) and s(x, y) the
sum of intensities within the mask as defined in (4).

µpq(x, y) =

x+h∑
xi=x−h

y+h∑
yi=y−h

(xi − x̂)p · (yi − ŷ)q · I[xi, yi] ·mask[xi − x, yi − h] (3)

s(x, y) =

x+h∑
xi=x−h

y+h∑
yi=y−h

I[xi, yi] ·mask[xi − x, yi − h] (4)



(a) h = 2 (b) h = 5 (c) h = 10

Figure 2. local orientation estimation for different scales (original FOV highlighted)

(a) h = 10

Figure 3. window
mask
(size 21 x 21)

with x̂ and ŷ being the position of the centroid of the window around (x, y) with the size 2 · h+ 1 as defined
in (5) and (6).

x̂ = 1
s(x,y) ·

x+h∑
xi=x−h

y+h∑
yi=y−h

xi · I[xi, yi] ·mask[xi − x, yi − h] (5)

ŷ = 1
s(x,y) ·

x+h∑
xi=x−h

y+h∑
yi=y−h

yi · I[xi, yi] ·mask[xi − x, yi − h] (6)

2.2 Rotation invariant feature extraction

2.2.1 Training

During training a small window around each pixel within the field of view of the fundus camera is extracted
(as shown in Fig. 4(a)). This window is then rotated according to the local image orientation φ (as shown in
Fig. 4(b)).

Similar to eigenfaces2 we then perform a principal component analysis (PCA) on the serialized window, the
resulting eigenvectors can be seen in figure 5.

(a) raw masked window (b) rotated window

Figure 4. image windows, h = 10
(histogram equalized and inverted for visualization)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. first 10 eigenvessels for h = 10
(histogram equalized and inverted for visualization)



Figure 6. eigenvessel shown in Fig. 5(d) pre-rotated in steps of 18◦ for scales h = [2, 5, 10]

2.2.2 Feature generation

The features for each pixel position in an image could now be generated by extracting a window around the
position, rotating it according to the local image orientation φ and projecting it into the feature space using
the eigenvessels computed during training. For computational efficiency the eigenvessels can be rotated in a
preprocessing step and the projection can be made using the eigenvessel with the same rotation as the local
image orientation. An example of such rotated eigenvessels can be seen in figure 6.

In order to gain a degree of scale invariance the above steps are performed for multiple scales and the final
feature vector fimage is formed by concatenating the feature vector of different scales.

2.3 Auto-context

The idea behind auto-context3 is to use the probability maps given by a first classification step as additional
context information in a second classification step. For this Tu et al.3 extract the class probabilities around each
pixel at around 4.000 locations (both single pixel probabilities and means of small patches) and append these to
the feature vector. We tried to reduce this number by learning the position of relevant context locations from
the training labels.

2.3.1 Context position estimation

A good feature should be able to discriminate between different classes, meaning in the case of vessel segmentation
that a context position relative to the current pixel that has a equal probability of being a vessel or a background
pixel is a bad feature. On the other hand a position that has a very high probability of being either one of the
classes has a high discriminative value.

To find such positions we calculated the relative prior probability during the training phase using the training
labels. Figure 7 shows the result of this computation. The center of the image corresponds to the mean class
label (and thus the prior class probability) the rest is the prior class probability relative to the center after being
rotated by the local image orientation computed at different scales. As one can see the highest probability for
a pixel of the class vessel is when looking in the direction of the local image orientation (i.e. the top in Fig. 7)
in front and behind the current pixel. This can be explained intuitively by the fact that if the current pixel
is a background pixel there is a high and almost uniform probability of the surrounding pixels also being a
background pixel. On the other hand if the current pixel is a vessel pixel there is a high probability of finding

(a) h = 2 (b) h = 5 (c) h = 10

Figure 7. multiscale relative prior vessel probability

ϕ 

Figure 8. relative context po-
sitions rotated by local image
orientation φ



(a) original image (b) ground truth (c) without auto-context

(d) with 1 auto-context loop (e) with 2 auto-context loops (f) with 3 auto-context loops

Figure 9. results on test image 1 of the DRIVE data set

other vessel pixels along the local image orientation (i.e. the vessel) and a high probability of finding background
pixels perpendicular to the vessel.

We now use the local maxima in this relative prior probability maps (i.e. highest vessel probability) and the
local minima (i.e. highest background probability maps) as positions for our context features. The resulting
context feature vector is simply computed by finding 13 probability values (four for the minima / maxima at
each scale and one in the center) relative to the current pixel rotated by the local image orientation as show in
figure 8.

2.3.2 Auto-context training loop

The first step is to train a classifier C0 (in our case a random forest8) on the set of all feature vectors f image and
their corresponding labels (“vessel” and “background”) of all available training images. In order to be able to
use auto-context we need a realistic probability prediction for each image Itrain in our training set. If we would
simply use the trained classifier C0 to make this prediction we would get unrealistic results since Itrain would be
part of the data on which C0 was trained. In order to avoid this we trained a temporary classifier Ctemp on all
images in the training set, except Itrain and used Ctemp to get a prediction P0 for Itrain. We repeated this step
for each image Itrain in our training set and thus got a realistic prediction for each image.

This prediction maps P0 where then used to extract the context features fprediction0 . By concatenating f image

and fprediction0 a new feature vector is formed and used to train the next classifier C1 in the context loop. As
seen in algorithm 1 this process is repeated multiple times.



Figure 10. receiver operating characteristic (ROC)
curve and area under the curve (Az) for the proposed
method on the DRIVE data set

Figure 11. Az after 0 to 5 auto-context loops

3. RESULTS & VALIDATION

The training and testing was performed on the DRIVE6 data set. The data set consists of 40 color fundus
images of which 33 show no sign of diabetic retinopathy and 7 show signs of mild early diabetic retinopathy.
The set is split into 20 training and 20 test images, each having at least one manual segmentation. In figure 9
the ground truth and the classification result of test image 1 of the DRIVE data set can be seen. A quantitative
evaluation was performed by calculating the ROC curve and the area under the curve (Az) (see image 10).
The segmentation results compare very favorably to other proposed methods9 outperforming all but the method
proposed by Staal et al.6

4. CONCLUSIONS AND FURTHER WORK

Interestingly the auto-context loop enhances the result after the first iteration (as can be seen in figure 11),
however after multiple iterations it degrades the segmentation of vessel endings and vessel bifurcations which
reduces the overall Az. This is due to the fact that the auto-context learns the average appearance of vessels,
which includes a order of magnitude more samples of straight vessel sections than vessel bifurcations and vessel
endings. Results could be further improved by treating bifurcations and vessel endings as own classes and
extending the proposed method to a multiclass method.

This method does not make any assumptions about the geometry or any other feature of retinal vessels but
learns the feature representation from the training data and thus could be applied to classification tasks similar
to vessel segmentation. Furthermore an extension to three dimensional data sets (e.g. retinal optical coherence
tomography10) is possible and will be investigated further.
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