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Abstract. We propose a method to predict treatment response patterns
based on spatio-temporal disease signatures extracted from longitudinal
spectral domain optical coherence tomography (SD-OCT) images. We
extract spatio-temporal disease signatures describing the underlying reti-
nal structure and pathology by transforming total retinal thickness maps
into a joint reference coordinate system. We formulate the prediction as
a multi-variate sparse generalized linear model regression based on the
aligned signatures. The algorithm predicts if and when recurrence of the
disease will occur in the future. Experiments demonstrate that the model
identifies predictive and interpretable features in the spatio-temporal sig-
nature. In initial experiments recurrence vs. non-recurrence is predicted
with a ROC AuC of 0.99. Based on observed longitudinal morphology
changes and a time-to-event based Cox regression model we predict the
time to recurrence with a mean absolute error (MAE) of 1.25 months,
comparing favorably to elastic net regression (1.34 months), demonstrat-
ing the benefit of a spatio-temporal survival model.

1 Introduction

Biomarkers derived from medical imaging data are an essential tool for diagno-
sis, therapeutic decisions, and evaluation of treatment response. They provide
valuable insight by quantifying informative changes in anatomic, physiological,
biochemical or molecular processes [1]. In a clinical setting predictive biomarkers
that estimate future disease development and treatment response are exception-
ally beneficial, since they allow to personalize treatment, and to optimize its
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effect. We propose a data-driven algorithm to identify spatio-temporal predic-
tive imaging biomarkers or signatures in longitudinal medical imaging data. The
algorithm localizes these markers in a joint reference space shared across individ-
uals after anatomical alignment, and predicts treatment response using sparse
learning methods. We demonstrate the effectiveness of the proposed method on
a longitudinal ophthalmic imaging dataset of patients with macular edema sec-
ondary to Retinal Vein Occlusion (RVO). The algorithm predicts two variables:
based on morphology observed in the early stage of treatment, it predicts if
edema will recur in an individual patient after treatment. Secondly, it predicts
the time-point of the first recurrence of edema.

Challenges in the Treatment of Retinal Diseases Retinal vein occlusion is the
second most common sight-threatening retinal vascular disorder after diabetic
retinopathy with an estimated 16.4 million adults suffering from RVO world-
wide [2]. In most cases a consequence of RVO is an exudation of fluid into
the macula, a so-called macular edema. Left untreated, this edema inevitably
leads to irreversible vision loss. An effective treatment for macular edema is
an intraocular injection of anti-vascular endothelial growth factor (anti-VEGF)
agents. However, without frequent treatment a recurrence of edema often oc-
curs. The high treatment burden on a patient, the variable response to the anti-
VEGF agent, the risk of complications as well as the very high cost of the drug
($2000 per injection) and the possible side-effects of frequent treatments make a
solid pro re nata (PRN, as needed) regimen on an individualized basis with the
smallest amount of anti-VEGF injections given while remaining effective, a vital
necessity. In current clinical practice, PRN treatment is guided by the presence
or absence of cystic retinal and subretinal fluid visible in Spectral-Domain Op-
tical Coherence Tomography (SD-OCT) images acquired at monthly intervals.
SD-OCT acquires 3-dimensional scans of the retina on a micrometer resolution
and enables a visualization and quantification of microstructural changes in the
eye. In Figure 1 a SD-OCT reconstruction from a healthy retina and a retina
with macular edema are shown, where in the diseased eye the retinal structure
is disrupted by a spongy cystic fluid structure, causing a swelling of the retina,
i.e. macular edema (Figure 1c). The prediction of individual disease paths en-
ables a personalized treatment with the potential reduction in the frequency of
both monitoring visits and particularly injections, which provides the urgently
needed relief of the current burden on both patients and healthcare systems in
a high-frequency, high-cost therapy [2].

Contribution In this paper we propose a method to predict treatment outcome
based on observations made during early stages of treatment. We identify in-
terpretable biomarkers in longitudinal imaging data for prediction. To compare
features through follow-up examinations, and across patients, we obtain a joint
coordinate reference space from retinal OCT images by intra-patient and inter-
patient registration using fundus and OCT image landmarks. From pixel-wise
features extracted from the initial three months within the reference frame coor-
dinate system we predict the treatment response of recurrence vs. non-recurrence
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Fig. 1: 3D SD-OCT reconstruction of a (a) healthy retina with the foveal pit in the
center, and (b) a retina with edema, where the swelling of the retina is caused by
cystic and subretinal fluid (c).

of macular edema in a 12 month follow-up using elastic net regularized general-
ized linear models. Furthermore, we predict the time-point of the first recurrence
of edema. Cross-validation experiments demonstrate that the proposed method
yields good prediction accuracy and interpretable results. Furthermore, we show
that longitudinal features together with time-to-event survival statistics in the
Cox proportional hazard model increase time-to-recurrence prediction accuracy.

Related Work We pose the prediction of treatment response as a multi-variate re-
gression problem. In the following, we briefly review relevant related approaches.
By treating each pixel/voxel or small groups of pixels as a single feature we are
operating in a high-dimension-low-sample-size setting, where the feature dimen-
sion size p is several orders of magnitude larger than the number of patients n
(p� n). Multivariate sparse linear regression methods, for instance Lasso [3] or
elastic net [4] as well as non-linear regression methods such as Random Forests [5]
are able to provide a prediction in such a setting [6,7]. In addition, they compute
measures of feature-importance enabling insight into disease mechanisms. Such
feature selection methods are used for instance in gene expression studies [8],
fMRI network analysis [9] or predictions in structural neuroimages [10]. Most
of these studies focus on prediction of the present condition from images, not
dealing with the prediction of the future.

Sabuncu [11] proposed a sparse Bayesian multivariate prediction model com-
bined with a survival model for studying longitudinal follow-up data. He demon-
strated that an image based time-to-event prediction improves the result com-
pared to a binary classification of converter/non-converter. Bogunović et al. [12]
proposed a machine learning approach to predict the treatment response from
retinal OCT in patients with age-related macular degeneration by classifying
quantitative features extracted from the fovea center aligned image data.

To compensate for the anatomical variation in imaging studies the individ-
ual data is usually mapped to a common coordinate system or atlas [13]. Spatial
variations in retinal images arise from different scanning positions and the vary-
ing anatomy of the retina across subjects. To ensure spatial consistency across
the retinal data Abràmoff et al. [14] described a method to normalize eye fundus
images by using visible landmarks such as the optic disc center, the fovea, and
the main vessel arcades. Due to the smaller field of view of clinical OCT images
compared to fundus images not all of these landmarks are available in OCT.
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Fig. 2: Steps to get spatio-temporal signatures in a joint reference space: (a) Intra-
patient registration via vessel structure. For illustration purpose 2D projections from
OCTs of two time-points are overlayed and colored blue resp. red. The steps in the pro-
jections come from the motion-correction. (b) Inter-patient alignment via fovea center
and optic disk center. (c) Disease features as total retinal thickness maps are obtained
by measuring the distance between the ILM layer and RPE layer. The cut through
the retina reveals the pathological cystic structure causing edema (green arrow). (d)
Transformation of the thickness maps into the reference frame.

2 Spatio-temporal Features in a Joint Reference Space

We normalize the retinal OCT images by transforming the data into a joint
reference coordinate system using intra-patient follow-up registration based on
the vessel structure, and inter-patient alignment via landmarks visible in OCT
and fundus images.

First, we reduce motion artefacts introduced by patient movement during
acquisition by the method described in [15]. To obtain landmarks for the intra-
patient follow-up registration, automatic vessel segmentation is performed on the
OCT images. Parameters for the affine registration are generated by applying
Coherent Point Drift [16] to the segmented retinal vessel point sets, as described
in [17] (Fig. 2a). The inter-patient affine registration is performed by aligning
the fovea center and the optic disk center within patients (Fig. 2b). Due to
the limited field of view of the macular centered OCT the optic disk is only
visible in the corresponding fundus image. Hence, a registration of the fundus
image to OCT is performed using the projection of the OCT image, registered
rigidly to the fundus image by minimizing the normalized cross-correlation of
the intensity values. The foveal center landmark (center of the foveal pit) (Fig.
1a), was set manually by expert readers. The optic disk center was identified
by applying circular Hough transformation with varying radii on the binary
threshold fundus image, and picking the circle showing the highest response.
The optic disk center position is the center of the circle. Since the quality of the
fundus images obtained by the OCT-scanner varies substantially, and the fovea
center is sometimes hard to identify in cases with heavy pathology, we chose as



reference scan the time-point at which the foveal center as well as the optic disc
center could be accurately determined. All other scans in the time-series were
transformed to the selected one, and the reference scan was aligned with the
other patients. Scans from the right eye were mirrored, in order to align their
anatomy with scans from the left eye.

Spatio-temporal Signature of Disease Total retinal thickness maps M are com-
puted as the distance between the inner limiting membrane (ILM) surface, which
is the boundary between the retina and the vitreous body, and the retinal pig-
ment epithelium (RPE), which is the border between the retina and the choroid
(Fig. 2c). These layers are identified using a graph-based surface segmentation
algorithm [18]. These maps are transformed into the reference space using the
obtained affine transformation (Fig. 2d).

Let v(m) = (x1, x2, ..., xk) be the vectorized pixel values from the transformed
thickness map M for the month m. By concatenating the thickness map vectors
and the change of thickness over time up to month m, a spatio-temporal signa-
ture vector is obtained for each individual: x(m) = (v(0),v(1), ...,v(m),v(1) −
v(0),v(2) − v(1), ...,v(m) − v(m−1)). These signatures are pooled in a matrix
X ∈ Rn×p, where each row represents a signature vector of a subject and each

column is a distinct spatio-temporal anatomical position in the retina. x
(m)
i ∈ Rp

is the signature vector for subject i.

3 Prediction of Recurrence

We predict the treatment response based on data up to the initial loading phase
of three monthly injections. Specifically, we predict for an individual based on the

corresponding spatio-temporal signature x
(m)
i covering the three month loading

phase, if a treated edema will recur in the future. In a second task we predict at
which time-point the first recurrence happens for patients with recurring edema.
For notational clarity, we drop the time-index (m) in the following explanation.

3.1 Prediction by Sparse Linear Regression

We assume that the continuous response variable yi for an individual i is a
weighted linear combination of the input variables xi: yi = w0 + w1x1 + ... +
wpxp = xiw. The coefficients (or weights) w are estimated for a training-set X
in a regularized way by minimizing the following objective function:

argmin
w

1

2n
‖Xw − y‖22 + λP (w) (1)

Since in our case the system is strongly underdetermined (p � n), a regu-
larization function P is necessary, where λ controls the amount of regulariza-
tion. Recently, sparsity has been proposed as property of the coefficients [3,8],
where only a few but relevant coefficients w are non-zero, highlighting predictive



anatomical regions and time-points. Sparsity can be obtained by applying the
`1 norm on w, known as Lasso regularization [3]. When features are strongly
correlated, Lasso tends to pick only one of these features at random. Thus, Zou
and Hastie proposed elastic net regularization [4] to overcome the limitation of
Lasso regularization, by combining the `1 norm with a ridge regularization (`2
norm):

P (w) = ρ‖w‖1 +
(1− ρ)

2
‖w‖22, (2)

where ρ defines the ratio of the convex combination of `1 and `2 regularization.
The features xi with non-zero coefficients wi represent anatomical locations

and time-points whose characteristics are informative for the prediction. They
enable interpretation by ophthalmologists.

3.2 Categorical Variable Prediction

Using a generalized version of the sparse linear regression, where the outcome
variable y is replaced by a function, categorical variables can be predicted using
logistic regression. The probabilities of the binary outcomes are modeled as logit
function (log of the odds): logit(pi) = ln( pi

1−pi
) = xiw, where pi = Pr(yi = 1|xi).

To obtain the coefficients Eq. 1 is modified such that:

argmin
w,c

n∑
i=1

(log(exp(yi(xiw + c)) + 1)) + λP (w) (3)

The class probability pi for a new case with covariates x can be predicted from
the trained weights via the inverse logit: pi = logit−1(xw).

We compute the coefficients w by training an elastic net regularized logistic
regression model using the spatio-temporal signature matrix X and the binary
outcome labels y of non-recurring/recurring edema within 12 months. By apply-
ing the trained model on an unseen case we obtain the probability of recurrence
pi. Finally, we threshold the probability in order to obtain a binary outcome.

3.3 Temporal Variable Prediction

We predict the time to the first recurrence of edema using survival analysis,
where the recurrence is modeled as a time duration T until an event hap-
pens. A common tool in survival analysis is the Cox proportional hazards (PH)
model [19]. The model assumes a log-linear relationship of the covariates to a
baseline hazard h0, which describes how the risk of event changes over time
based on baseline covariates. The time-parameterized hazard function is then:

h(t|xi) = h0(t) exp(xiw) (4)

A generalized linear model is obtained by formalizing the model as a hazard

ratio: log h(t|X)
h0(t)

= Xw. Inference can be performed using partial likelihood [19]

L(w) =
∏
r∈D

exp(xrw)∑
j∈Ri

exp(xjw)
(5)



where D is the set of indices of patient events and Ri is the set of indices
of individuals which are at risk at time ti. The coefficients are obtained by
minimizing the regularized negative partial log-likelihood:

argmin
w

−
∑
r∈D

(xrw − log(
∑
j∈Ri

exp(xjw))) + λP (w) (6)

Predictions of hazards for a new individual with covariates x can be obtained
by using Eq. 4 with the new covariates. In that case the baseline hazard h0 has
to be estimated by using the Breslow estimator:

h0(ti) =
di∑

j∈Ri
exp(xjw)

(7)

where di is the number of events at ti. Furthermore, we can estimate the individ-
ual survival function Si(t), which is defined as Si(t) = Pr(T > t), describing the
probability that the time of event is later than some specified time t. The func-
tion can be estimated from the individual relative risk, the cumulative hazard
Λ0 and the baseline survival function S0(t) [20]:

Si(t) = S0(t) exp(xiw), with (8)

Λ0(t) =
∑

j:tj≤t
h0(tj), and S0(t) = exp(−Λ0(t)) (9)

We obtain the coefficients w by training an elastic net regularized Cox PH
model on the spatio-temporal signature matrix X and the time-points of events
in month. For an unseen case we estimate from the covariates x the baseline
hazard h0 using Eq. 7 and the individual survival function Si(t) using Eq. 9. By
computing the survival function for all time-points we determine the time-point
of recurrence where the survival function drops below a given threshold.

A description of how to optimize the objective functions using coordinate
descent can be found in [21] and [22]. We used the implementation from the
package glmnet of the statistics software R for our computation.

4 Evaluation and Results

We evaluated the proposed method in two prediction experiments, (1) predicting
recurrence vs. non-recurrence of edema within 12 months, and (2) predicting the
time to the first recurrence of edema. Baseline SD-OCT scans and 12 monthly
follow-up scans of 44 patients with central retinal vein occlusion (CRVO) were
included. All patients received initial ranibizumab (anti-VEGF) injections for
three months followed by a PRN regimen. Total retinal thickness maps were
computed for all scans, and were transformed into the joint coordinate system
as described in Section 2. All maps were smoothed with a Gaussian kernel with
σ = 1. Fig. 3 shows the aligned total retinal thickness maps for two patients
with resp. without recurring edema.
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Fig. 3: 12 month follow-up series of aligned total retinal thickness maps for two patients
with recurring edema at month 5 and 10 resp. without recurring edema.
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Fig. 4: (a) Division of macula in nine regions of interest defined by ETDRS [23]. (b)
Mean retinal thickness of the baseline (month 0) per region stratified by patients with
non-recurrence and recurrence of edema.

The time-point of a recurrence was determined algorithmically for each pa-
tient to serve as a standard-of-reference for evaluation. First, the total thickness
maps were divided into nine circular regions of interest within three concen-
tric circles with diameters of 1mm, 3mm and 6mm, centered at the fovea (Fig.
4a) as defined by the Early Treatment Diabetic Retinopathy Study (ETDRS)
design [23]. From each region the mean thickness was computed. A recurrence
was defined as an increase of the mean thickness by 15 pixels (= 29µm) of two
subsequent time-points in any region. 6 of the 44 patients showed no recurring
edema within 12 months.

We used two-level nested five-fold cross-validation (CV) on patient level,
where in the inner loop we conduct a grid search to tune the sparsity parameters
ρ and λ, as well as the optimal threshold for the probability outcomes in terms of
maximizing the F-score on the training set (harmonized mean of sensitivity and
specificity). In the outer CV loop we measure the performance of the trained
model on the test fold. All evaluations were repeated 20 times with random
stratified CV partitioning, with at least one non-recurrence case in each fold.

To evaluate the benefit of using longitudinal data, we performed the training

and testing on thickness maps up to month two (x
(2)
i ), one (x

(1)
i ), resp. the

baseline month only (x
(0)
i ). The tasks have been evaluated once with thickness



Table 1: Evaluation results from the classification task non-recurrence vs. recurrence
using total thickness maps up to month two, one and the baseline month, as well as
up to two month with the thickness change over time information (2’). Classification
results are non-recurrence vs. recurrence.

Logistic Regression Random Forest Cox PH
Month 0 1 2 2’ 0 1 2 2’ 0 1 2 2’

Sensitivity 1.00 1.00 1.00 1.00 0.88 0.85 0.78 0.81 0.83 0.83 0.83 0.45
Specificity 0.92 0.90 0.90 0.82 0.98 0.98 0.98 1.00 0.99 0.90 0.94 0.96
ROC AuC 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.91 0.93 0.96

difference between two subsequent time-points in the signature vector and once
without this information, to evaluate the performance gain when utilizing disease
changes over time.

Finally, models were computed from the whole dataset, from which the coef-
ficients were mapped back to images to get interpretative results of the selected
features.

Prediction of non-recurrence vs. recurrence In the first experiment we evaluated
the binary classification performance of recurrence vs. non-recurrence of edema
within 12 months using sparse logistic regression in comparison to a Random For-
est classification. As error measures we computed the sensitivity, specificity and
the Receiver-Operating-Curve (ROC) Area-under-Curve (AuC), where the AuC
was obtained from the predicted probabilities within the outer cross-validation
loop, and a mean AuC has been computed from these. The classification results
are listed in Table 1. In the classification task the baseline month is already
enough to obtain predictive results with an AuC of 0.99 for logistic regression
and Random Forest classification (note that at this point due to the small amount
of patients with non-recurrence the confidence interval for sensitivity/specificity
is large. For a sensitivity/specificity of 1.00/0.92 the 95 % confidence intervals
are 0.52-1.00 / 0.78-0.98). When mapping the coefficients back to the reference
frame (Fig. 5a) it can be observed that almost all features were selected from
the fovea center and the parafovea temporal area at month zero. By comparing
the mean thickness for each region between the two groups, as done in Fig. 4b,
it can be observed that there is a (significant) difference of the mean thickness
between the groups in these two areas, as well as almost no overlap of the mean
thickness in the parafovea temporal area. The sparse feature selection correctly
identified these areas and used them for prediction.

Prediction of time to recurrence In the second experiment we predicted the time
to the first recurrence of edema for patients with recurring edema. We trained
an elastic net regularized regression model, as well as Random Forest regression
model with the thickness maps as input and the time-to-recurrence as outcome
variables. To evaluate the benefit of using a survival model in comparison to a
regression model, we furthermore trained a Cox PH model on the same dataset,
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Fig. 5: Sparse coefficients mapped into the common reference coordinate system. (a):
An exemplary fundus image mapped into the reference frame, overlaid by the retained
coefficients from a single month and coefficients retained from the sparse logistic re-
gression for month zero to two. (b) Coefficients retained from the Cox PH model for
month zero, one and two as well as from the thickness differences between month one
and zero resp. month two and one.

where patients with no recurrence were set to censored after 12 months, since
we do not know if edema recurred afterwards. For each patient we estimated the
survival function Si(t) as described in Section 3.3. The time at which the survival
function dropped below 0.5 has been set as the time at which an recurrence of
edema is estimated. Patients with a survival function > 0.5 after twelve month
got the non-recurrence label. Hence, the Cox PH model was used for both tasks,
the binary classification and the time-point of recurrence estimation.

Mean absolute error (MAE) between predicted and true month of recurrence
are reported in Table 2. The Cox PH model showed superior results compared
to linear regression and Random Forest regression, with an MAE of 1.25 for
Cox PH model resp. 1.34 for linear regression and 1.38 for Random Forest.
Furthermore, the addition of thickness changes over time as features improved
the performance for Cox and elastic net regression. By looking at the coefficients
for the Cox PH model (Fig. 5b) it can be observed that almost only thickness
difference features are picked. Features from the difference between month one
and zero are selected over the whole field of view, whereas from the month two
to month one thickness difference only features from the perifoveal areas are
selected, skipping the central and the parafoveal area. This indicates that the
change of thickness between month zero and one in general as well as the change
in the outer areas between month two and one are informative regarding the
duration until recurrence.



Table 2: Evaluation results of the time to recurrence prediction task. The mean absolute
error (MAE) and the standard deviation (SD) is computed as the absolute difference
between predicted and true time to recurrence in months.

Elastic Net Random Forest Cox PH
Month 0 1 2 2’ 0 1 2 2’ 0 1 2 2’

MAE [month] 1.37 1.40 1.43 1.34 1.39 1.38 1.54 1.46 1.30 1.26 1.29 1.25
SD 1.10 1.12 1.10 1.01 1.11 1.12 1.12 1.06 1.28 1.27 1.27 1.26

5 Conclusion

In this paper we propose a method to extract spatio-temporal signatures from
longitudinal retinal SD-OCT images transformed into a joint reference coordi-
nate system, and use these features to predict the future development of disease
under treatment. In particular we predicted two variables from image acqui-
sitions during the initial three monthly treatments, (1) the non-recurrence vs.
recurrence of edema within twelve months, and (2) the time to recurrence of
edema. We demonstrated that sparse feature selection via elastic net in a mul-
tivariate generalized linear model setting yields accurate prediction and inter-
pretable results. Furthermore, we showed that using survival models in terms
of the Cox proportional hazards model increases the accuracy when predicting
the temporal variable. The proposed methodology is an important step towards
image-based individualization of patient management and treatment.
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