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Abstract. Generating disease progression models from longitudinal
medical imaging data is a challenging task due to the varying and
often unknown state and speed of disease progression at the time of
data acquisition, the limited number of scans and varying scanning
intervals. We propose a method for temporally aligning imaging data
from multiple patients driven by disease appearance. It aligns follow-
up series of different patients in time, and creates a cross-sectional
spatio-temporal disease pattern distribution model. Similarities in
the disease distribution guide an optimization process, regularized
by temporal rigidity and disease volume terms. We demonstrate the
benefit of longitudinal alignment by classifying instances of differ-
ent fibrosing interstitial lung diseases. Classification results (AUC)
of Usual Interstitial Pneumonia (UIP) versus non-UIP improve from
AUC=0.71 to 0.78 following alignment, classification of UIP vs. Ex-
trinsic Allergic Alveolitis (EAA) improves from 0.78 to 0.88.

1 Introduction

Observing the progression of a disease over time is an essential factor during
treatment, staging and prognosis [1]. Longitudinal studies with images acquired
from subjects at multiple timepoints capture subject-specific disease develop-
ment trajectories [1]. To study and model disease progression across subjects,
it is crucial to establish accurate correspondence of disease stages across indi-
viduals. Typically, choosing the initial examination as reference point does not
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reflect an accurate fit of disease stage, since the extend of disease at the time
of first diagnosis can vary [2]. In this paper we propose a method for computa-
tional alignment of disease progression stages across subjects based on follow-up
sequences of imaging data, taking varying progression speeds into account.

A group of diseases for which the progression can be determined via High-
Resolution CT (HRCT) are fibrosing interstitial lung diseases (FILD) [3], in-
cluding three of the most commonly encountered clinical entities: Idiopathic
Pulmonary Fibrosis (IPF) with Usual Interstitial Pneumonia (UIP), Nonspecific
Interstitial Pneumonia (NSIP), and chronic Extrinsic Allergic Alveolitis (EAA).
Various forms of fibrosis and inflammation induce destructive changes to the
lung. They are visible as distinctive patterns in HRCT data. Examples are
parenchymal reticulation, centrilobular nodules, ground-glass attenuation, and
honeycombing [2]. Identifying the extent, spatial distribution and severity of
these patterns is essential in the diagnosis of FILD and the differential diagnosis
of its entities [3]. To the authors’ knowledge, current work features only one
study dealing with quantification of disease progression of FILD in subsequent
HRCT images [4], and no study exists with a population-wide image based FILD
disease progression model.

Related work The question of modelling temporal trajectories across individuals
has been studied extensively in the context of shape development. Durrleman et
al. [5] and Hart et al. [6] proposed spatio-temporal models from longitudinal data
based on diffeomorphic shape changes. Hart et al. developed an interpolation
scheme to average individual growth models at every timepoint, independently.
Durrleman et al. computed the evolution of a mean template shape and a 4D
deformation field of the individual growth models, which describes the variabil-
ity in appearance and shape evolution. Dittrich et al. [7] found that differences
in fetal brain growth speed can be reliably identified based on a non-parametric
shape representation. In the case of FILD the shape changes due to pathology
and disease progression are negligible. Major changes occur in appearance, tex-
ture and its global spatial distribution in the organ. Furthermore, in contrast
to development, the timepoint origin within the population is not known in dis-
ease progression. Fonteijn et al. [8] proposed an event-based disease progression
model where a time line of a disease is developed by finding an optimal ordering
of a set of discrete events within a population using a MCMC algorithm.

Contribution In this paper we propose a novel method to perform alignment of
disease progression based on appearance. We assume that two acquisitions with
similar spatial distribution of disease patterns are at a similar disease progres-
sion stage. We first identify appearance patterns that occur frequently across the
population and can be identified with high stability. To ensure spatial consis-
tency across the data, we map all data into a common reference space. Then, we
calculate dissimilarity measures across the entire population based on the spatial
distribution of these patterns. We perform alignment by minimizing a cost term
that penalizes dissimilarity of cases with similar progression status. Alignment
cannot permute the acquisition sequence of individual patients, but we allow
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interval durations to change (non-rigid longitudinal alignment), reflecting differ-
ences in progression speed. We regularize alignment by inject assumptions about
volume increase or decrease of a specific pattern. After alignment we construct a
model of disease progression based on the aligned cases. We can fit new data to
this model, and can compare the fit of individual data to multiple models repre-
senting different diseases. Results demonstrate that the comparison of model fit
can serve as accurate classifier, and that the alignment substantially improves
classification performance.

2 Identifying appearance classes in a joint reference space

Tissue classification We perform unsupervised texture classification on the seg-
mented lungs across all cases [9]. A Gray-Level Co-occurrence Matrix (GLCM)
is computed for each voxel with various window sizes (w) and distances (d). To
obtain a orientation independent GLCM, it is summed up for all 13 distinct
directions. In our case we computed a GLCM for w = 33 and d = 9, for w = 17
and d = {1, 5, 9}, as well as w = 5 and d = 1, resulting in 5 GLCMs per voxel.
From these GLCMs the Haralick features are computed, resulting in a feature
vector of size 65 per voxel. The dimensionality of the feature vector is reduced to
15 by using PCA, and k-Means clustering with k=15 clusters is applied across
the entire population.

Atlas building To map all voxels into a joint reference space we build a lung at-
las by group-wise Large Deformation Diffeomorphic Metric Mapping (LDDMM)
registration using ANTS [10] with a cross-correlation similarity measure. The at-
las consists of a mean shape and mean intensity volume. Finally, an expert radiol-
ogist identified the two label clusters that are forming reticular and honeycomb-
ing patterns, which we then merged into a binary labeling (non-fibrotic/fibrotic
tissue). These two clusters are used exemplarily in the further computation.

3 Longitudinal Alignment

Let {L1, ...,LN} be a set of N atlas transformed binary label volumes with cor-
responding acquisition timepoints t0 = 〈t01, ..., t0N 〉, where the timepoints are the
relative temporal distance in days to the first acquisition per subject. The assign-
ment of an acquisition to a specific subject is defined by the binary variable ci,j ,
where ci,j is 1 if acquisition i and j are from the same patient, and 0 otherwise.
¬c is the negation of c. We apply a Gaussian filter to each Li, resulting in Gi,
and compute a dissimilarity matrix D ∈ RN×N , where Di,j is the Bray-Curtis
Dissimilarity (BCD) [11]: Di,j =

∑
x∈X |Gi(x)−Gj(x)|/

∑
x∈X |Gi(x)+Gj(x)|.

Furthermore, we define vi as the relative volume of disease labeled tissue to the
whole lung volume for acquisition i. Now, we perform longitudinal alignment by
minimizing an objective function C(t) to obtain a mapping t0 → t. The objec-
tive function consists of three terms, (1) a tissue distribution similarity term, (2)
a temporal rigidity term that strengthens adherence to the temporal intervals
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within the series of acquisitions of the same patient, and (3) a regularization term
that penalizes a decrease of volume of the diseased tissue. Hence, we minimize:

t = argmin
t

(C(t)) = argmin
t

(S(t) + λR(t) + µV (t)), (1)

subject to tmin < ti < tmax, ti ∈ t and ti < tj ⇔ t0i < t0j , ci,j = 1, ti, tj ∈ t.
The first constraint restricts the timepoints being in an interval [tmin, tmax]. The
second constraint keeps the order of the acquisitions within a subject. λ and µ
are weighting factors of the second and third term. The similarity term is:

S(t) =
∑

1≤i≤N

∑
1≤j≤N

w(ti, tj)Di,j , w(ti, tj) = exp

Å
− (ti − tj)2

h2

ã
, (2)

where w weights the costs of dissimilarity of spatial tissue distribution higher
for pairs of acquisitions with similar time point, and lower for those with time
points farther apart. The temporal rigidity term R(t) increases if the length of
the period between acquisitions of the same subject differs from the actual period
(|ti− tj |). We can enforce temporal rigidity if we assume that the progression of
disease occurs with the same speed across the population, or allow for deviations
if this is not the case, i.e., if the disease can progress faster for some subjects.

R(t) =
∑

1≤i≤N

∑
1≤j≤N

|(ti − tj)− (t0i − t0j )| · ci,j (3)

The third term V (t) is the disease volume regularization term, which penalizes
acquisitions of different patients with a higher disease volume to be sorted before
acquisitions with a lower disease volume.

V (t) =
∑

1≤i≤N

∑
1≤j≤N

max (0,−(vi − vj)(ti − tj)) · ¬ci,j (4)

As constrained minimization algorithm we use Sequential Least Squares Pro-
gramming. Fig. 1 illustrates the effect of longitudinal alignment of the acqui-
sitions. The dissimilarity matrix is calculated once, and the optimization only
manipulates the acquisition time vector t. To illustrate the level of pattern distri-
bution coherence across volumes, the right side of Fig. 1 shows the dissimilarity
matrix after permuting the volumes corresponding to their optimized value ti.

4 Disease progression model building

After alignment we can estimate an average disease progression model from the
aligned data. A cross-sectional spatial distribution Ḡ at an arbitrary timepoint
t is computed from the aligned label volumes as follows:

Ḡ(t, t) =
1

Z

∑
1≤i≤N

w(t, ti) ·Gi, Z =
∑

1≤i≤N
w(t, ti) (5)
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Fig. 1: a) Dissimilarity matrix D sorted by initial timepoints t0. b) Plot relative disease
volume v versus un-aligned timepoints t0 per patient. c) D sorted by aligned timepoints
t. d) Plot relative disease volume v versus aligned timepoints t.

The weighting factor function w is analogous to (2). Label distribution volumes
which are close to the specified timepoint t are given a higher weight than vol-
umes that are farther away. A time-parameterized spatiotemporal disease pro-
gression model M(t) is obtained by computing Ḡ at any timepoint in the interval
[tmin, tmax] . Fig. 2 illustrates the spatial distribution within the model at various
timepoints.

4.1 Fitting a new subject to the disease progression model

Let {Gs
1, ...,G

s
n} be a set of n atlas-transformed smoothed label acquisitions

of a new subject that was not part of the model building process, and t0s be
the corresponding timepoints for this subject. We can fit the observed data of
the new subject to the disease model built as described in the previous section,
by minimizing an objective function similar to (1). The optimal timepoints ts

for the new observations in the model M(t) are obtained by finding a mapping
ts0 → ts so that the distances of the acquisition label distribution to the model
label distribution at these timepoints are minimized. Hence, we minimize:

ts = argmin
ts

∑
1≤i≤n

(
DKL−Sym(M(tsi )||Gs

i )
)

+ ξR(ts) (6)

where DKL−Sym is the symmetric Kullback–Leibler divergence. R is the same
timepoint rigidness constraint as in (3), and ξ is the weighting factor of this
term. The same time-constraints as in (1) are used for optimization.

As a result we obtain a cross-sectional spatiotemporal disease progression
model from the temporally aligned acquisitions. Furthermore, new acquisitions
or series of acquisitions can be fitted to the model.

5 Experiments and Results

The evaluation dataset contains 70 HRCT thorax acquisitions at maximum in-
spiration level from 31 patients. The axial resolution is 512 × 512 voxels with
a x,y-spacing of 0.55mm to 0.85mm and a slice thickness of 1mm. An expert
radiologist determined the disease class based on the inspection of the HRCT
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Fig. 2: Disease distribution progression models. 1st and 2nd row: comparison of aligned
models UIP vs. non-UIP. 3rd and 4th row: UIP un-aligned and UIP with random
starting-points. Note the differences in aligned UIP and non-UIP. The color indicates
the cross-sectional spatial distribution of the fibrotic tissue.

Table 1: Summary of classification performance based on non-aligned and aligned data:
UIP vs. non-UIP (UvN) resp. UIP vs. EAA (UvE) from models with non-rigid, rigid
and un-aligned timepoints, resp. random starting points.

UvN UvE

Alignment Sens. Spec. F1 AuC Sens. Spec. F1 AuC

non-rigid 0.875 0.667 0.757 0.771 0.875 0.875 0.875 0.875
rigid 0.750 0.800 0.774 0.775 0.750 0.875 0.808 0.812
un-aligned 0.688 0.733 0.710 0.710 0.688 0.875 0.770 0.781
random 0.812 0.733 0.771 0.773 0.812 0.875 0.843 0.844

images, as well as on the histopathology report. UIP, possible UIP, NSIP, EAA,
and ‘Other’ are the disease classes defined beforehand. The number of patients
(acquisitions) having UIP are 11(18), possible UIP 5(11), NSIP 5(15), EAA
8(21), and other 2(3). The proposed spatiotemporal disease progression model
M was evaluated in terms of the accuracy during two classification tasks: UIP
(UIP+possible UIP) vs. non-UIP and UIP vs EAA. We assume that the spatio-
temporal distribution of the fibrosis is different in these two models, and that a
new subject can be classified by determining which model fit better to the acqui-
sitions. The evaluation was performed in a Leave-One-Out Cross-Validation set-
ting per subject for both the model building and the classification. An UIP resp.
non-UIP spatiotemporal model was computed from the time-adjusted training
data for the left and right lung separately, since the speed of disease progression
varies for each side of lung. The smoothing factor σ was set to 5. tmin, tmax was
set to ±max(t) and h was set to 730 (= 2 years). Each longitudinal alignment
was performed once with the temporal rigidity constraint (Equation 3) and once
without this term by setting the weights λ and ξ to 5 × 10−3 (rigid) resp. 0
(non-rigid) in (1) and (6). The weight µ for the disease volume regularization
term was set to 5 × 10−3. As initial experiments showed, setting the weights λ
and µ to these values guides the optimization process without dominating it. To
evaluate the effect of alignment, we also computed a model from the un-aligned
data and a random model, where the timepoint of the first acquisition for each
subject is shifted randomly.
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In order to determine the disease class, the test subject acquisitions are fitted
to the left and right UIP resp. non-UIP models as described in (6), where in the
optimization process the KL-Divergence of both sides are summed up. Finally,
the disease label is determined as the label to which model the KL-Divergence
of the fitted acquisitions is smaller.

A summary of the classification performance is given in Table 1. In all experi-
ments alignment improves classification performance. In case of UIP vs. non-UIP
the Area under Curve (AUC) increases from 0.710 (unaligned) to 0.771 (non-
rigid) and 0.775 (rigid). The sensitivity increases from 0.688 to 0.875 (non-rigid)
and 0.750 (rigid), whereas the specificity increases only in the rigid case from
0.733 to 0.8, and for non-rigid alignment the specificity is reduced to 0.667. In
the case of UIP vs. EAA the AuC increases from 0.781 (unaligned) to 0.875
(non-rigid) resp. 0.812 (rigid). Sensitivity increases from 0.688 to 0.750 (rigid)
resp. 0.875 (non-rigid), whereas the specificity remains stable at 0.875.

6 Discussion

We propose to align disease progression across patients based on imaging data.
The alignment establishes temporal correspondence across patients, and enables
building progression models that reflect observations made across multiple pa-
tients. The alignment is based on appearance patterns that are identified by
unsupervised learning in a study population. It allows fitting a new subject to
an existing model, and thereby allows for evaluating the similarity between an
individual and a population whose imaging data spans different disease stages.

We evaluated the longitudinal alignment in terms of classification perfor-
mance, by differentiating between UIP and non-UIP, resp. UIP and EAA. After
alignment the differences in disease pattern distribution in UIP and non-UIP
become apparent (Fig. 2). In UIP the distribution is subpleural and basilar and
in non-UIP it is more diffusely distributed across the entire lung. These find-
ings are consistent with the literature [2,3], and the method now allows for a
quantitative comparison across cases. Temporal non-rigidity during alignment
improved the sensitivity of classification.

As distance measure we chose BCD instead of Euclidean distance. This mea-
sure is closely related to the Dice’s coefficient (DSC), with BCD = 1 − DSC .
In early disease stages, where the disease label voxels are the minority, the Eu-
clidean distance is dominated by the zero-labeled non-disease voxels, whereas
BCD measures the overlap of non-zero disease label voxels only. The disease
volume regularization term makes an assumption regarding the increase or de-
crease of a pattern while the disease advances. This can be estimated from the
individual cases. However, current work focuses on methods to allow for analysis
of patterns where there is no fixed a priori assumption in this regard.

In the experiments we focused on the disease patterns of honeycombing and
reticulation, which are the dominant factors in UIP. In principle the method
works with any dissimilarity measure, and by incorporating other appearance
patterns such as ground-glass opacities or centrilobular nodules, we expect an
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enhancement of the model and further insight into the disease progression of
ILDs. Furthermore, evaluation of the alignment and the model building on a
larger lung dataset as well as on other progressing diseases with longitudinal
image data available are ongoing.
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