Population-wide Disease Modeling to Predict Macular Thickness and Treatment Response in Longitudinal OCT Data

Christian Doppler Laboratory for Ophthalmic Image Analysis (OPTIMA), Medical University of Vienna, Austria

Wolf-Dieter Vogl^{1,2}, Sebastian M. Waldstein², Bianca S. Gerendas², Jing Wu², Alessio Montuoro², Ana-Maria Glodan ², Dominika Podkowinski², Christian Simader², Ursula Schmidt-Erfurth² and Georg Langs¹ ¹Computational Imaging Research Lab (CIR), Department of Biomedical Imaging and Image-guided Therapy ²Vienna Reading Center, Department of Ophthalmology and Optometry

Financial disclosures: None

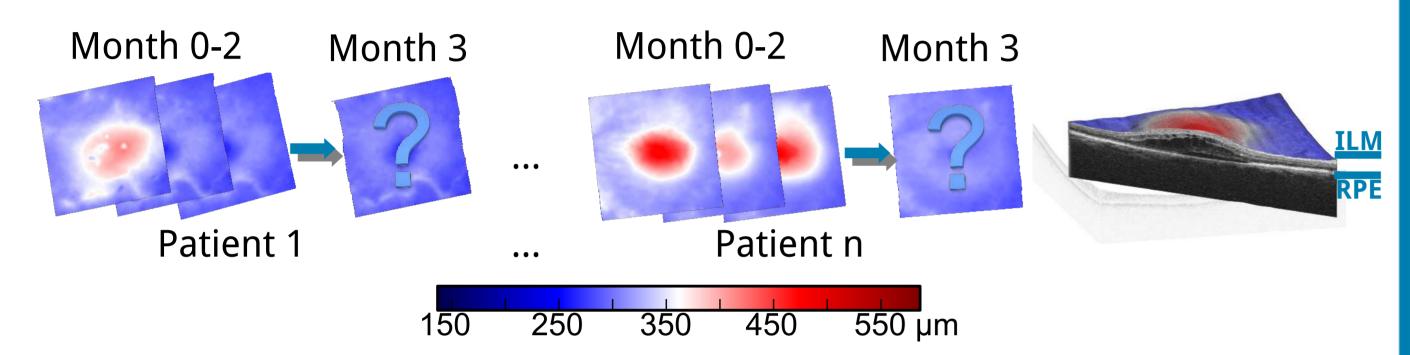
Introduction

Motivation:

The ability to predict the future development of a disease is an extremely important goal both in clinical and scientific practice, as well as in the general health care setting.

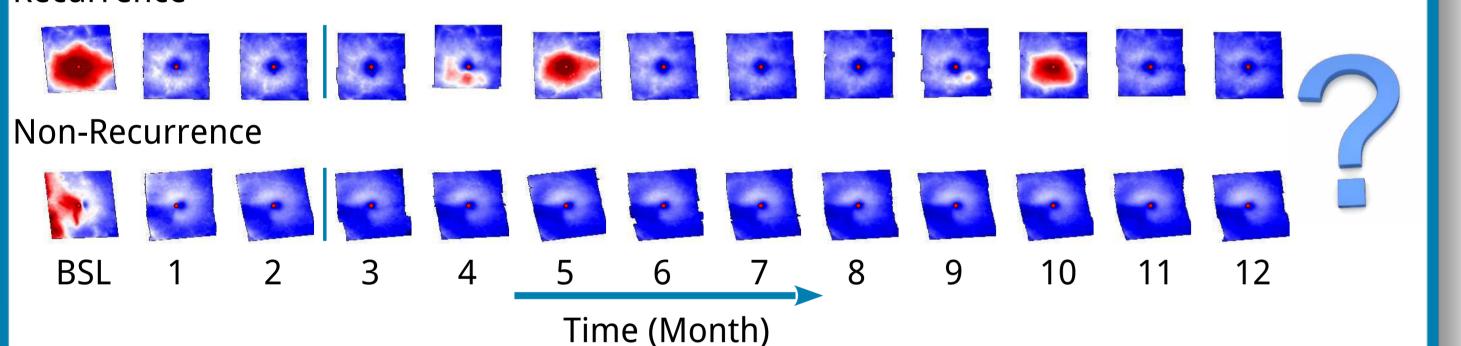
Predict **future** treatment response and disease path from longitudinal spectral domain optical coherence tomography (SD-OCT) images.

(1) Predict the total retinal thickness at month four from initial three month induction phase.



(2) Predict from retinal images of the first three month if macular edema will recur within a 12 month follow-up period.

Recurrence



Idea:

- Learn disease progression patterns from a large cohort of longitudinal SD-OCT images using sparse machine learning methods.
- Use total retinal thickness maps as feature describing the development of the underlying retinal structure and pathology.
- Normalize scans to compensate for anatomical and scan position variations.

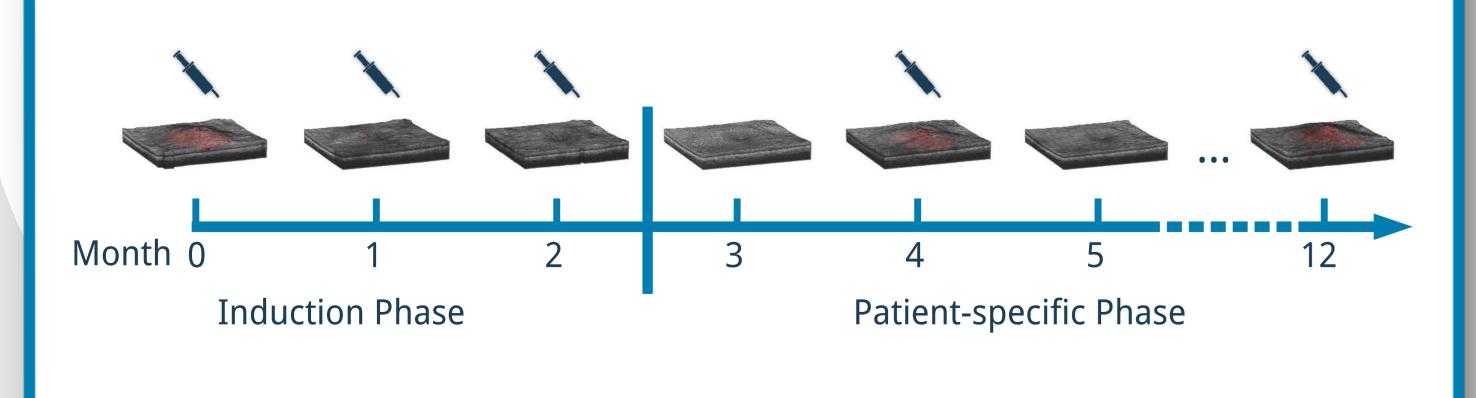
Data

Training and Validation Set:

- 155 patients with macular edema secondary to central retinal vein occlusion.
- Retinal SD-OCT baseline scan + 12 monthly follow-up scans from two vendors (Heidelberg Spectralis, Zeiss Cirrus). 2,015 scans overall.
- 28 patients showed no recurring edema within 12 month (= 18%).

Treatment:

• Three month induction phase with monthly ranibizumab injections, followed by a PRN (pro re nata = per need) regimen.



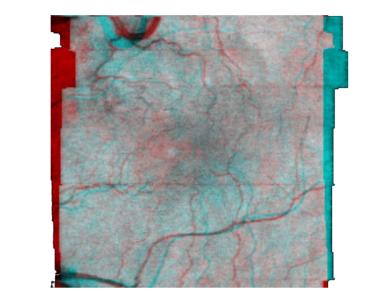
Methods

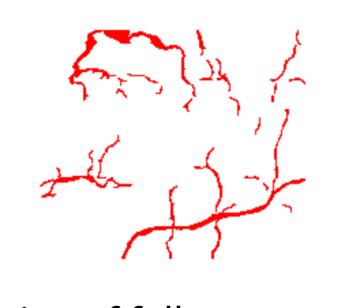
. Total Retinal Thickness Maps

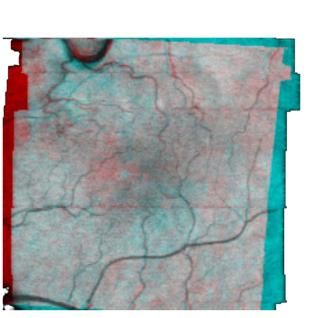
• Total retinal thickness maps are computed as distance between ILM and RPE layer. Layers are automatically segmented using Iowa reference algorithm¹.

2. Spatio-temporal Features in a Joint Reference Space

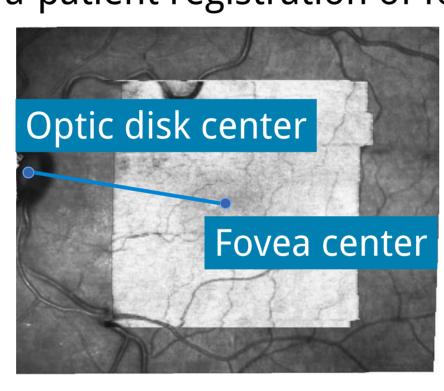
- Transformation of scans and thickness maps into a joint reference space via:
- (1) Intra-patient registration by aligning the vessel structures²
- (2) Inter-patient registration by aligning fovea center and optic disk center landmarks

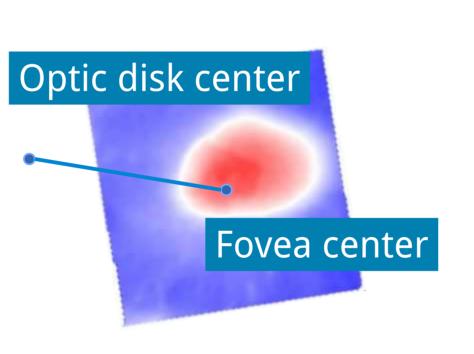






(1) Intra-patient registration of follow-up scans via vessel structures.

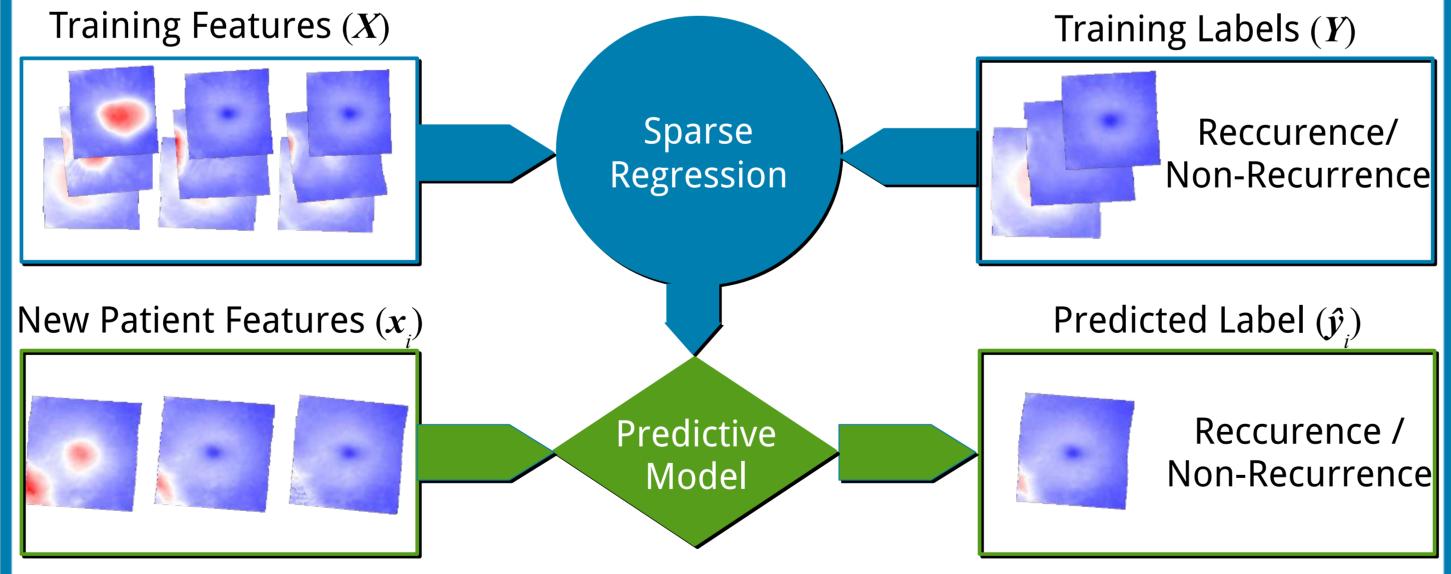




(2) Inter-patient registration via optic nerve head center and fovea center. Transformation of the thickness map into the joint reference space.

- Concatenate transformed thickness maps into a feature vector, forming a spatio-temporal disease signature for each individual.
- Pool feature vectors in a design matrix X for training the disease model.

3. Prediction



- Multivariate regression in a high-dimension-low-sample-size setting (p>>n).
- Generalized linear model (GLM) with elastic net regularization³ to get sparse coefficients w.
- Non-zero coefficients reveals anatomically important locations for prediction.
- Logistic regression GLM is used for prediction of recurrence / non-recurrence of edema.

Linear regression with elastic net regularization:

$$\arg\min_{\mathbf{w}} \frac{1}{2n_{samples}} * ||\mathbf{y} - \mathbf{X}\mathbf{w}||_{2}^{2} + \lambda * l1_{ratio} * ||\mathbf{w}||_{1} + \frac{\lambda}{2} * (1 - l1_{ratio}) * ||\mathbf{w}||_{2}^{2}$$

Logistic regression with elastic net regularization:

$$\arg\min_{\mathbf{w}} \sum_{i}^{n} \log(1 + \exp(-y_{i}\mathbf{w}^{T}\mathbf{x}_{i})) + \lambda * I1_{ratio} * ||\mathbf{w}||_{1} + \frac{\lambda}{2} * (1 - I1_{ratio}) * ||\mathbf{w}||_{2}^{2}$$

Results

Validation

Elastic Net

LASSO

- 5-fold cross validation setup.
- Compare elastic net regression and logistic regression with other regression methods (Random forest, LASSO, Cox...).
- Performance measures:

Ridge Regression $\lambda = 1.4 \times 10^7$

Random Forest trees = 100

- Mean absolute error (MAE) in μm for thickness prediction.
- Sensitivity / specificity, and ROC Area under curve (AuC) for recurrence prediction.

Median Mean (Std)

MAE [µm] MAE [µm]

21.91 (19.48) 0.43

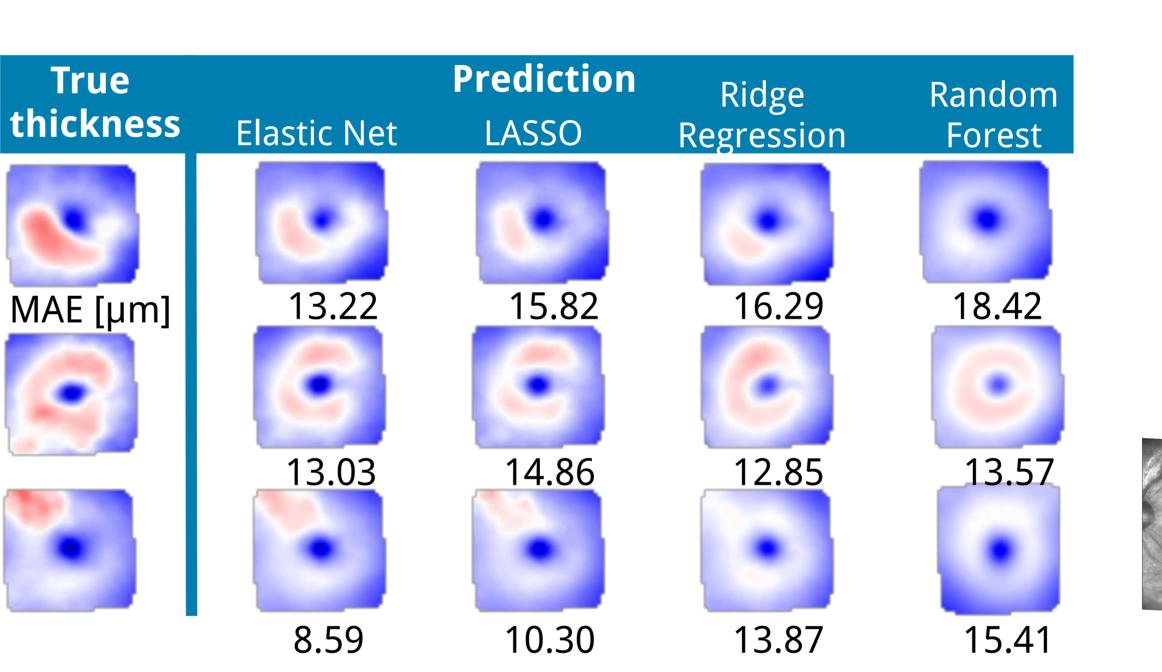
Prediction of Total Retinal Thickness

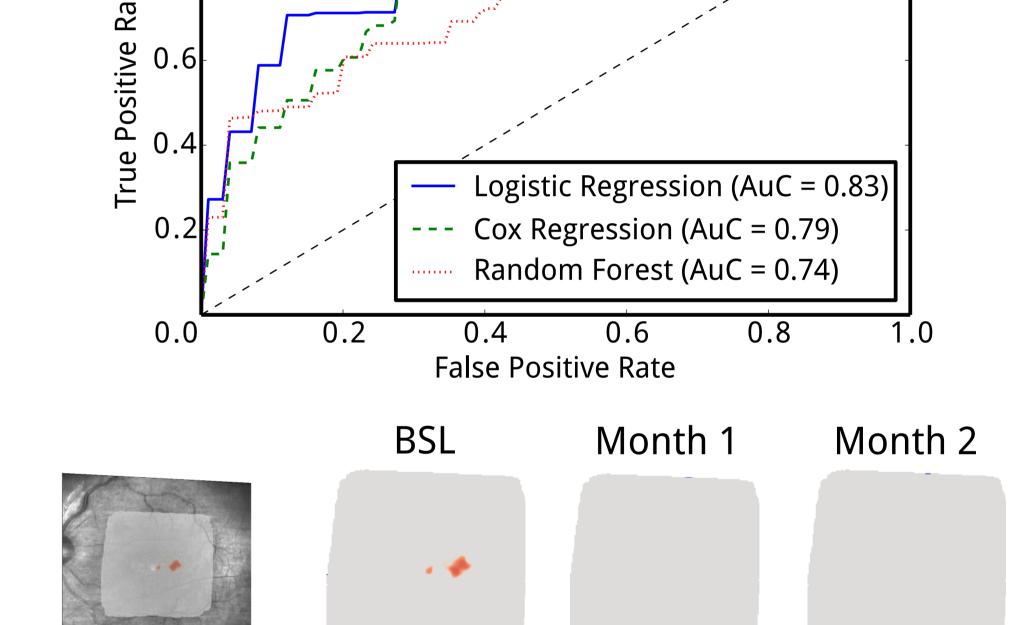
Parameter

 $\lambda = 500$, I1 = 0.5 **13.64**

Prediction of Recurring / Non-recurring Edema

	Method	Sensitivity	/ Specificity	RUC AL
Mean (Std)	Logistic Regression	70	75	83
] MAE [µm] R ²	Cox Regression	70	73	79
20.26 (20.86) 0.45	Random Forest	32	93	74
20.88 (21.50) 0.40	Recei	ver operating c	haracteristic:	
21.47 (20.97) 0.43	1.0	ver operating c	TIGI GCCCT ISCIC.	





Sparse coefficients of logistic regression. Note that mainly baseline thicknesses in fovea and parafovea temporal areas are selected.

Conclusion

- We propose a method for prediction of **future** development of disease under treatment using sparse machine learning models based on longitudinal SD-OCT imaging data.
- The method predicts the outcome of two variables: (1) total retinal thickness after induction phase, (2) non-recurrence vs. recurrence of edema within twelve month follow-up.
- Sparse feature selection via elastic net in a multivariate generalized linear model setting yields accurate predictions and interpretable results.

References

Vogl W.-D. et al.: Spatio-Temporal Signatures to Predict Retinal Disease Recurrence. Information Processing in Medical Imaging, 24th International Conference, IPMI 2015 (2015) [1] Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Transactions on Medical Imaging 28(9) (2009) 1436–1447

[2] Wu, J., Gerendas, B.S., Waldstein, S.M., Langs, G., Simader, C., Schmidt-Erfurth, U.: Stable registration of pathological 3d-oct scans using retinal vessels: Proceedings of the Ophthalmic Medical Image Analysis First International Workshop, OMIA 2014, Held in Conjunction with MICCAI 2014, Iowa Research Online (2014) 1–8 [3] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2) (2005) 301–320

